设f(x)为可导函数,且满足条件lim(x->0)[f(1)-f(1-x)]/2x=1,则曲线y=f(x)在(1,f(x))处的切线斜率______.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 16:27:41
设f(x)为可导函数,且满足条件lim(x->0)[f(1)-f(1-x)]/2x=1,则曲线y=f(x)在(1,f(x))处的切线斜率______.
x){n_=t>ٱi

设f(x)为可导函数,且满足条件lim(x->0)[f(1)-f(1-x)]/2x=1,则曲线y=f(x)在(1,f(x))处的切线斜率______.
设f(x)为可导函数,且满足条件lim(x->0)[f(1)-f(1-x)]/2x=1,则曲线y=f(x)在(1,f(x))处的
切线斜率______.

设f(x)为可导函数,且满足条件lim(x->0)[f(1)-f(1-x)]/2x=1,则曲线y=f(x)在(1,f(x))处的切线斜率______.
lim(x->0)[f(1)-f(1-x)]/2x=1
lim(x->0)[f(1)-f(1-x)]/x=2
即曲线在(1,f(1))处切线斜率为2

lim(x->0)[f(1)-f(1-x)]/2x=1
lim(x->0)[f(1-x)-f(1) ]/2(-x)=1
f'(1)=lim(x->0)[f(1-x)-f(1) ]/(-x)=2
曲线y=f(x)在(1,f(1))处的切线斜率__=2____.

导数极限问题1.函数f(x)在x=a处可导,则lim h→a [f(h)-f(a)]/(h-a)等于?怎样做?2.函数f(x)在x=a处可导,则lim h→0 [f(a+3h)-f(a-h)]/2h等于?跟第一题一样3.设函数f(x)为可导函数,且满足条件lim x→0 [f(1)-f(1-x)]/2x 设f(x)为可导函数,且满足lim[f(1)+f(1-x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率 设f(x)为可导函数,且满足lim[f(1)-f(1-x)]/2x=-2,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率 设f(x)为可导函数,且满足lim[f(1)+f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率设f(x)为可导函数,且满足lim[f(1)-f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率 设f(x)为可导函数,且满足lim[f(1)+f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率设f(x)为可导函数,且满足lim[f(1)-f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率 设f(x)为可导函数,且满足条件lim(x->0)[f(1)-f(1-x)]/2x=1,则曲线y=f(x)在(1,f(x))处的切线斜率______. 一道导数数学概念题1.设f(x)为可导函数,且满足条件lim(f(1)-f(1-x))/(2x)=-1 则曲线y=f(x)在点(1,f(1))处的切线的斜率是?2.若f(x)在x=0处可导,则f(|x|)在x=0处(不一定可导) 为什么? 设函数f(x)满足下列条件:(1)f(x+y)=f(x)·f(y)对一切x,y属于R(2)f(x)=1+xg(x),而lim g(x)=1 (x趋于0)试证明f(x)在R上处处可导,且f'(x)=f(x) 设f(x)可导,且满足条件lim(f(1)-f(1-x)/2x)=-1,则曲线y=f(x)在(1,f1)处的切线斜率为x趋向于0 设f(x)为可导函数,且满足f(x)=∫(上限X下线1)f(t)/tdt+(x-1)e^x求f(x) 设f(x)可到函数,且满足lim(f(1)-f(1-△x))/(△x)=-1,则曲线y=f(x)在点(1,f(x))处的切线斜率为 设f(x)为可导函数且满足lim(f(a)-f(a-x))/(2x)=-1,x趋近0则曲线y=f(x)在点(a,f(a))处的切线斜率为? 设f(x)为可导函数,且满足lim[f(1)-f(1-x)]/2x=-1,x趋于0,求曲线y=f(x)在点(1,f(1))处的斜率讲明白了哈 设f(x)为可导函数,且lim(h→0) f(3)-f(3+h)/2h=5,则f'(3)等于? 设f(x)为可导函数,且满足lim[4+f(1-x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(,f(1))处的切线方程要详细解题过程,谢谢! 洛必达法则//问几点数学常识lim是什么意思?lim(f(x)/F(x))与lim(f'(x)/F'(x))有何区别?设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0; (2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的 设函数f(x)可导,且满足f(x)-∫(上限为x,下限为0)f(t)dt=e^x,求f(x) 需要详解, 设函数f(x)在点0可导,且f(0)=0,则lim(x→0)[f(x)/x]=