若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 19:26:55
若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根.
xSMN@:².v-D7,Kb`D`0ELW B܀U{SĖ^]s෢pG*Aqe;0b FJ85j"+E5ZOIR Xv#&FKv =ՌsP+e];{hm#87uFy 0| nZ$AkZ-Ӂ?a3j_%"" L'D)t4xbӏ7t;PH6' E\/J_J9G=br`'ؔHMk[|;5Dʅ.r;D !0Д29

若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根.
若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根.

若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根.
方程式1和3的根判别式之和为:
【(2a+b)-2*根号下cd】+【(2c+d)-2*根号下ab】,
把这个式子整理为:
(a-2*根号下ab+b)+(c-2*根号下cd+d)+a+c
也就是等于:(根号a-根号b)的平方+(根号c+根号d)的平方+a+c
两个平方式大于等于0,又因为a,c大于0,所以整个式子大于0,
所以1、3两个方程判别式中至少有一个大于0
同理,2、4两方程也至少有一个
所以四个方程式中至少有两个方程有不等实根

若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根. 若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根. 若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根. 若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根. 若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根. 若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根. 若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根. 若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根. 若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根. 若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根. 若a,b,c,d>o,证明方程1.x平方/2+根号下(2a+b)x+根号下cd=o,2.x平方/2+根号下(2b+b)x+根号下ad=o,3.x平方/2+根号下(2c+d)x+根号下ab=o,4.x平方/2+根号下(2d+a)x+根号下bc=o中,至少有两个方程有不相等的实数根. 证明:关于x的方程ax平方+bx+x=o有根为1的充要条件是a+b+c=o. 证明:方程ax的三次方+bx的平方+cx+d=o有一个根为-1的充要条件是a+c=b+d 证明:方程ax的三次方+bx的平方+cx+d=o有一个根为-1的充要条件是a+c=b+d BC是圆O的直径,AB=a,AD=b,CD=c,BC=d,求圆的直径d是方程x立方-(a平方+b平方+c平方)x -2abc=0的根 关于X的分式方程(x-a)/(b-x)=c/d有解,怎么证明c≠-d 证明下列不等式:1.如果A>b>0,C>d>0,那么a平方c>b平方d2.a平方+b平方+2大于等于2(a+b) a,b,c是三角形的3边,试判断方程 b平方乘x平方+(b平方+c平方-a平方)乘x+c平方=0是否有实数解,证明你的结论