圆的基本性质的问题提问在三角形ABC中,AB=AC=10,BC=12,求其外接圆的半径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:40:08
圆的基本性质的问题提问在三角形ABC中,AB=AC=10,BC=12,求其外接圆的半径
xTn@?&,HyH6~OHT@!m6 A@MDMLk/נRUT̙3gǎcD/Zyr>WmmJ*06:$+EFGTTYW}qL?4]=2G_fw?1?s,ZZ=S w+\LcX2<fK>ZH'#w[3~ Hlv00d`wh0=+7Y7#nوгK!GZL#M0IF$,!6Мi0EX Yx3".y7sǪNJlt;%ə$ݺAFW~*nOq-gIi:d2Ljd|6q)xCŸGDz O~‹{L;׼D b֧{Xp)J!ݲ);>),N D2kGWA(,#)5㮗&& m

圆的基本性质的问题提问在三角形ABC中,AB=AC=10,BC=12,求其外接圆的半径
圆的基本性质的问题提问
在三角形ABC中,AB=AC=10,BC=12,求其外接圆的半径

圆的基本性质的问题提问在三角形ABC中,AB=AC=10,BC=12,求其外接圆的半径
25/4.
显然这个等腰三角形的腰长为10,底边为12.易得底边上的高线长为8.因为等腰三角形外接圆的圆心必定在等腰三角形的底边的中线上(到线段两个端点距离相等的点在这条线段的中垂线上,等腰三角形三线合一).设外接圆的半径为r,则圆心到等腰三角形两腰交点的距离为r,圆心到等腰三角形底边中点的距离为8-r,根据勾股定理得6^2+(8-r)^2=r^2,可解得r=25/4.

12所对的角的余弦为(100+100-144)/(2*10*10)=7/25,则正弦为24/25,则由正弦定理,外接圆半径为12/(2*24/25)=25/4

6.25 外心D为三边中垂线的交点 设AD为X 所以CD为X X^2=(8-X)^2+6^2 X=6.25

过A作AD垂直BC,因为是等腰三角形,所以AD平分BC,BD=6,勾股定理,有AD=8。
AD垂直平分BC,由圆的性质知圆心在AD或延长线上,OD=AD-R或者 OD=R-AD
在三角形 BDO中 R^2=BD^2+(AD-R)^2
解得 R=25/4