f(x) g(x)[a,b] x属于[a,b] a-b积分f(x)dx=a-b积分g(x)dx;a-x积分f(x)dx>=a-x积分g(x)dx;证明a-b积分xf(x)f(x) g(x)为在[a,b]上的连续函数,x属于[a,b]时,a-b积分f(x)dx=a-b积分g(x)dx;且a-x积分f(x)dx>=a-x积分g(x)dx;证明a-b积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:44:08
f(x) g(x)[a,b] x属于[a,b] a-b积分f(x)dx=a-b积分g(x)dx;a-x积分f(x)dx>=a-x积分g(x)dx;证明a-b积分xf(x)f(x) g(x)为在[a,b]上的连续函数,x属于[a,b]时,a-b积分f(x)dx=a-b积分g(x)dx;且a-x积分f(x)dx>=a-x积分g(x)dx;证明a-b积
xJA_%Dd榾Erfg6MqJRWۻHR(Be7I|ήFlnzӛ;0ƍz\j PRtZ@<$7֭BAUMظ 7wm*ύQ1)]Ͼfo.{* XT8._EwN!"7(! UhU_@xhq?Ӻ\JV}v:ZaNj"淗z hp3g6(ZPi;m $̬C!^ǘB@)uX J0-jҀ7-<(r*Y-#%@L [J`rJ.77үLawW=F<5|3~$JbXݱ[凴]zy#

f(x) g(x)[a,b] x属于[a,b] a-b积分f(x)dx=a-b积分g(x)dx;a-x积分f(x)dx>=a-x积分g(x)dx;证明a-b积分xf(x)f(x) g(x)为在[a,b]上的连续函数,x属于[a,b]时,a-b积分f(x)dx=a-b积分g(x)dx;且a-x积分f(x)dx>=a-x积分g(x)dx;证明a-b积
f(x) g(x)[a,b] x属于[a,b] a-b积分f(x)dx=a-b积分g(x)dx;a-x积分f(x)dx>=a-x积分g(x)dx;证明a-b积分xf(x)
f(x) g(x)为在[a,b]上的连续函数,x属于[a,b]时,
a-b积分f(x)dx=a-b积分g(x)dx;
且a-x积分f(x)dx>=a-x积分g(x)dx;
证明a-b积分xf(x)dx

f(x) g(x)[a,b] x属于[a,b] a-b积分f(x)dx=a-b积分g(x)dx;a-x积分f(x)dx>=a-x积分g(x)dx;证明a-b积分xf(x)f(x) g(x)为在[a,b]上的连续函数,x属于[a,b]时,a-b积分f(x)dx=a-b积分g(x)dx;且a-x积分f(x)dx>=a-x积分g(x)dx;证明a-b积
分部积分
§x[f(x)-g(x)]dx=§xd[§f(x)-g(x)]=x§f(x)-g(x)dx#a,b#-§§f(x)-g(x)dxdx

这个,你想做什么?

max[f(x),g(x)]、min[f(x),”证明max[f(x),g(x)]在C属于[a,b]“的题目却是证明max[f(x),g(x)]在[a,b]的连续性, 证明g(x)=a根号下f(x)-b/xf(x) (a、b属于R)的奇偶性 f(x) g(x)[a,b] x属于[a,b] a-b积分f(x)dx=a-b积分g(x)dx;a-x积分f(x)dx>=a-x积分g(x)dx;证明a-b积分xf(x)f(x) g(x)为在[a,b]上的连续函数,x属于[a,b]时,a-b积分f(x)dx=a-b积分g(x)dx;且a-x积分f(x)dx>=a-x积分g(x)dx;证明a-b积 设f(x),g(x)为连续函数 x属于[a,b] 证明函数 h(x)=max{f(x),g(x)}和p(x)=min{f(x),g(x)}也都是 连续函数 已知函数f(x)和g(x)的定义域和值域都为R,则f(x)>g(x)的充要条件是A.存在x属于R,使f(x)>g(x)B.存在无限多个x属于R,使f(x)>g(x)C.对任意x属于R,都有使f(x)>g(x)+2D.对任意x属于R,都有f(x)-g(x)>0 函数f(x),g(x)在R上是可导函数,且f'(x)大于等于g'(x)对任意的x属于[a,b]都成立,则对任意的x属于[a,b],恒有(A)f(x)+f(a)大于等于g(x)+g(a)(B)f(x)+g(a)大于等于g(x)+f(a)(C)f(x 关于微分中值定理的题,设 f(x) ,g(x) 在区间 [a,b] 上连续,并且在开区间 (a,b) 上可导,证明:若 f(a) >= g(a),并且对于所有x属于 (a,b)都有f'(x) >=g'(x),则对于所有x属于 [a,b] 都有f(x) >=g(x) 请用微分中值定 设f(x)、g(x)是R上的可导函数,f'(x)、g'(x)分别为f(x),g(x)的导函数,且f'(x)g(x)+f(x)g'(x)A.F(X)G(B)>F(B)G(X)B.F(X)G(A)>F(A)G(X)C.F(X)G(X)>F(B)G(B)D.F(X)G(X)>F(A)G(A) 定义在R上的函数f(x),g(x)在R上的导函数分别为f'(x),g'(x).若x属于R时,f'(x)>g'(x),则下列叙述中正确的是( D )A 对于任意的f(x),g(x),当x属于R时,f(x)>g(x);B 对于任意的f(x),g(x),存在x0属于R,当x属于(x0, 定义在R上的函数f(x),g(x)在R上的导函数分别为f'(x),g'(x).若x属于R时,f'(x)>g'(x),则下列叙述中正确的是( D )A 对于任意的f(x),g(x),当x属于R时,f(x)>g(x);B 对于任意的f(x),g(x),存在x0属于R,当x属于(x0, 已知函数f(x),g(x)在R上有定义,对任意的x,y属于R有f(x-y)=f(x)g(y)-g(x)f(y)且f(1)不等于0,求f(x)为奇函若f(1)=f(2)求g(1)+g(-1)的值2.设函数f(x)=-|x-1|+|x-2|,若不等式|a+b|+|a-b|>=|a|f(x)(a不等于0,ab属于R)求实数x的 在(a,b)内若f'(x)=g'(x)则f(x)-g(x)= 设函数f(x)=x^2-2x,x属于[-2,a],求f(x)的最小值g(a) f(x)=(3a-1)x+b-a,x属于[0,1],若f(x) 一个绝对值里四个函数F(x)=|g(a) g(x)||f(b) f(x) | 设f(x),g(x)可导且g’(x)≠0,则存在ζ属于(a,b),使得f'(ζ)/g'(ζ)=(f(a)-f(ζ))/(g(ζ)-g(b)) 设f(x),g(x)是定义在R上的恒大于0的函数,且f `(x)g(x)-f (x)g `(x)f(b)g(x)D,f(x)g(x)>f(a)g(a) 有关导数的选择题已知f(x)和g(x)是R上的可导函数,对任意实数x,都有f(x)*g(x)不等0和f(x)g'(x)>f'(x)g(x),那么af(a)g(a)(C)f(x)g(b)>f(b)g(x)(D)f(x)g(a)>f(a)g(x)