第九个
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 07:52:35
第九个
第九个
第九个
1+√3tan10
=1+√3sin10/cos10
=(cos10+√3sin10)/cos10
=2sin(10+30)/cos10
=2sin40/cos10
sin50(1+√3tan10)
=(2sin40sin50)/cos10
=[cos(50-40)-cos(50+40)]/cos10
=cos10/cos10
=1
sin50°(1+√3tan10°) =sin50°cos10°(1+√3tan10°)/cos10° =sin50°(cos10°+√3sin10°)/cos10° =2sin50°[(1/2)*cos10°+(√3/2)*sin10°]/cos10° =2sin50°(sin30°cos10°+cos30°sin10°)/cos10° =2sin50°sin(30°+10°)/cos10° =2sin40°cos40°/cos10° =sin80°/cos10° =1 故答案为:1. 证明:(1)连接DB,由菱形ABCD可得AB=AD,又∠DAB=60°,∴△ABD是等边三角形,
∵P为AB的中点,∴DP⊥AB.
∵AA1⊥平面ABCD,∴AA1⊥DP.
又AA1∩AB=A,∴DP⊥平面A1ABB1.
(2)取CD的中点E,连接PE,EQ,又Q为CD1的中点,根据三角形的中位线定理可得EQ∥DD1,
∵EQ⊄平面ADD1A1.DD1⊂平面ADD1A1.
∴EQ∥平面ADD1A1.
由于平行四边形APED可得EP∥AD,同理可得EP∥平面ADD1A1.
∵EP∩EQ=E,∴平面EPQ∥平面ADD1A1.∴PQ∥平面ADD1A1.
6. (2)
2sin50°(1+√3tan10°)
=2sin50°cos10°(1+√3tan10°)/cos10°
=2sin50°(cos10°+√3sin10°)/cos10°
=4sin50°cos50°/cos10°
=2sin100°/cos10°
=2
答案为2