求对角矩阵设矩阵A=1 2 22 1 22 2 1求正交矩阵T-1AT=T‘AT为对角矩阵.(要求写出正交矩阵T和相应的对角矩阵T-1AT=T’AT)-1是在T的右上角的小体字
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 13:43:30
xSn@~b]g728C_B4
Vm)-Ryx'
Y|7qZ?6bãqg}:
y%/4ǁw-aֺ^cnD s v2h7Cao+_4;0ɮD#+5mDS~Z[/cȠ#ПÁd˿OU+dR1a'x8I='bُTs +~'Fg(*+Mj3C67쒡2
N>[P;#(Rfv?
k$ROx`G(>
567}-FCL2vn^.8~lwxkNjJTv"UQ5W@ \⤗{Hyj^\KEVזz~?#[i-,&d}~r>Tq8<>gH#R{WY5M̷c$oyrj
求对角矩阵设矩阵A=1 2 22 1 22 2 1求正交矩阵T-1AT=T‘AT为对角矩阵.(要求写出正交矩阵T和相应的对角矩阵T-1AT=T’AT)-1是在T的右上角的小体字
求对角矩阵
设矩阵A=1 2 2
2 1 2
2 2 1
求正交矩阵T-1AT=T‘AT为对角矩阵.(要求写出正交矩阵T和相应的对角矩阵T-1AT=T’AT)
-1是在T的右上角的小体字
求对角矩阵设矩阵A=1 2 22 1 22 2 1求正交矩阵T-1AT=T‘AT为对角矩阵.(要求写出正交矩阵T和相应的对角矩阵T-1AT=T’AT)-1是在T的右上角的小体字
矩阵A的特征多项式为f(x)=|xE-A|=(x-5)(x+1)^2,解出特征值为x1=5,x2=x3=-1,分别求齐次方程(5E-A)X=0,(-E-A)X=0的非零解,
(5E-A)X=0的非零解(5的特征向量)为(1,1,1),归范化使其模为1得(1/√3,1/√3,1/√3),(如果不要求T正交不须归范化)
(-E-A)X=0的非零解(-1的特征向量)为(1,0,-1),(-1/2,1,-1/2),归范化为(1/√2,0,-1/√2),(-1/√6,2/√6,-1/√6),
将3个化一的特征向量作为列构成正交矩阵T为
1/√3,1/√2,-1/√6,
1/√3,0,2/√6,
1/√3,-1/√2,1/√6,
对角矩阵为diag(5,-1,-1),即对角线上元为特征值.
设矩阵A=[422;242;224],1、求矩阵A的所有特征值与特征向量;2、求正交矩阵P,使得P-1AP为对角矩阵.
求正交矩阵T使T^-1AT=TAT为对角矩阵.要求写出正交矩阵T和相应对角矩阵T-1AT=TAT设矩阵A= 2 -1 -1 -1 2 -1-1 -1 2
求对角矩阵设矩阵A=1 2 22 1 22 2 1求正交矩阵T-1AT=T‘AT为对角矩阵.(要求写出正交矩阵T和相应的对角矩阵T-1AT=T’AT)-1是在T的右上角的小体字
设矩阵A=-2 1 1 1-2 1 1 1 -2,求正交矩阵T使T^-1AT=T'AT的对角矩阵
设实对称矩阵A=1 -2 0 -2 2 -2 0 -2 3 求正交矩阵P,使P^-1AP为对角矩阵.
设矩阵A=[2 -2 0 ; -2 1 - 2 ; 0 -2 0] 求正交矩阵T ,使TAT为对角矩阵 急
设矩阵 .求正交矩阵 使 为对角矩阵.(要求写出正交矩阵 和相应的对角矩阵 )设矩阵A={2.-1.-1 -1.2.-1 -1.-1.2} .求正交矩阵T使T负1AT=T'AT为对角矩阵。(要求写出正交矩阵T和相应的对角矩阵T负1A
设矩阵A=-1 1 0 -4 3 0 1 0 2(1)求A的特征值和特征向量;设矩阵A=-1 1 0 -4 3 0 1 0 2,(1)求A的特征值和特征向量;(2)判断矩阵A是否与对角矩阵相似,若相似写出可逆矩阵P及对角矩阵Λ.
求正交矩阵Q,使QAQ^-1为对角矩阵A= 2 2 -22 5 -4
要考试 急用 1.设矩阵A=[1 -1 -1;-1 1 -1;-1 -1 1],求正交矩阵T使T^-1AT=T`AT为对角矩2.设矩阵A=[-1 2 2; 2 -1 2;2 2 -1 ],求正交矩阵T使T^-1AT=T`AT为对角矩阵
设N阶矩阵A= 1 B ...B B 1 ...B .........B B ...11,求A的特性值和特性向量 2,求可逆矩阵P,使得P-1AP为对角矩阵.
设矩阵A=-2 1 1 ,1 -2 1 ,1 1 -2,求正交矩阵T使T-1AT=T'39;AT为对角矩阵.要求写出正交矩阵T和相应的对角矩阵T^-1AT=T'AT
求正交矩阵T使T^-1AT=TAT 为对角矩阵 要求写出正交矩阵T和相对应的对角矩阵T^-1AT=TAT设矩阵A= 2 -1 -1-1 2 -1-1 -1 2
设矩阵A= 2 -1 -1 -1 2 -1 -1 -1 2 ,求正交矩阵T使T的负一次方AT=T'AT为对角矩阵.(要求写出正交矩阵T和相应的对角矩阵T的负一次方AT=T'AT)
已知3阶矩阵A的特征值为-1,1,2,设B=A2+2A-E求矩阵B特征值及与B相似的对角矩阵
设矩阵A= 求一个可逆矩阵P,使P-1 AP为对角阵,并给出该对角阵A={ -1 -1 2 }3 -5 62 -2 2
设矩阵A=[-1 2 2; 2 -1 2;2 2 -1 ],求正交矩阵T使T^-1AT=T`AT为对角矩阵想要这两题的详细步骤我财富值就这点了 望见谅
设矩阵A=第一行 1,0,0 第二行0,2,1 第三行0,1,2 ,求可逆矩阵P,使P-1AP为对角矩阵.