如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一点(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 12:27:02
如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一点(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与
xUMOF+*U2N%2kU+Wr l jS~|-4PX0政gddA./Y-#+9DgݨO5UysL5`CBT/eJ6&B&ԇ\J>OLɚM?΂ ϓ>p(۫:=GNб=N$?OA׷x<~Qlub'?2?@ʆ_^EOqvRʅjLҜTwZV2r%$( ((t/(j8V0ep1+ Lhٳ5qaQ_rq(91T|%t[+;BeC7ЂpD`WІ3: s=ܻY#!D:D :5FBU"# *")Gtm~QW1a'uP CR0ICJom."q

如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一点(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与
如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求抛物线的解析式.
(2)在直线AC上方的抛物线上有一点
(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一点(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与
(1)用交点式y=a(x-x1)(x-x2)得到y=a(x-4)(x-1),再将(0,-2)代入y=a(x-4)(x-1)中,得到a=-1/2.即得抛物线方程y=-1/2(x-4)(x-1)
(2)存在点P,设P(x,y)此处y不等于0,(因为等于0时不能形成△APM)由已知可得在△OAC中,OA=4,OC=2,所以△APM∽△OAC,有两种情况:
1.当AM/OA=PM/OC,即(4-x)/4=y/2,再联立y=-1/2(x-4)(x-1) ,解得y=1,所以x=3,即P(3,1);
2.当AM/OC=PM/OA,即得(4-x)/2=y/4,再联立y=-1/2(x-4)(x-1) ,解得x=4(舍去,因为代入y=0),x=5,代入得到对应的y=-2,即P(4,-2)

设:抛物线为:y=ax²+bx+c,带入A,B,C三点得:a=-0.5;b=3.5;c=-2

(1)设y=a(x-1)(x-4),即y=ax^2-5ax+4a,
当x=0时,y=4a=-2,即a=-1/2,所以:
   y=-(1/2)x^2+(5/2)x-2.
(2)点D(5/2,9/8)
四边形ADBC的面积=三角形ABD的面积+三角形ABC的面积
=3*(9/8)/2+3*2/2=75/16.
(3)若存在,则 AM/OC=...

全部展开

(1)设y=a(x-1)(x-4),即y=ax^2-5ax+4a,
当x=0时,y=4a=-2,即a=-1/2,所以:
   y=-(1/2)x^2+(5/2)x-2.
(2)点D(5/2,9/8)
四边形ADBC的面积=三角形ABD的面积+三角形ABC的面积
=3*(9/8)/2+3*2/2=75/16.
(3)若存在,则 AM/OC=PM/OA 或者 AM/OA=PM/OC,
即:AM/2=PM/4 或者 AM/4=PM/2,
设M(t,0),则x=t时,|PM|=|-(1/2)t^2+(5/2)t-2|,
|AM|=|t-4|,且t不等于0且t不等于4,否则P与A或C重合.
[P与C重合时,两个三角形也重合为一个三角形]
第一种:AM/2=PM/4 ==>|PM|=2|AM|
-(1/2)t^2+(5/2)t-2=2t-8 或 -(1/2)t^2+(5/2)t-2=8-2t
==>t=-3或t=4 或者 t=4或t=5===>t=-3或t=5,即此时两解;
第二种:AM/4=PM/2===>2|PM|=|AM|
-t^2+5t-4=t-4 或者 -t^2+5t-4=4-t
==>t=0或t=4 或者 t=2或t=4===>t=2,即此时一解;
综上所述,共有三种情形:P(-3,1);P(5,-2);P(2,1).

收起

如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1) 求出抛物线的解析式;(2) P 24.如图,在平面直角坐标系中,已知抛物线经过点A(4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解24.如图,在平面直角坐标系中,已知抛物线经过点A(4,0),B(0,-4),C(2,0)三点.(1)求抛物线 如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点. (1)抛物线上是否存在点n使∠nao=∠cao (2) 抛物线上市都存在点q使△bac=三角形dac 如图,对称轴为直线x= 72的抛物线经过点A(6,0)和B(0,4). (1)求抛物线解析式及顶点坐标; (2)如图,对称轴为直线x= 72的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐 如图,抛物线y=ax2+bx经过点A(-4,0)、B(-2,2),连接OB、AB,(1)求该抛物线的解析式.如图,抛物线y=ax2+bx经过点A(-4,0)、B(-2,2),连接OB、AB,(1)求该抛物线的解析式.(2)求证:△OAB是等腰直角三角 如图,抛物线y=ax2+bx经过点A(-4,0)、B(-2,2),连接OB、AB,(1)求该抛物线的解析式.如图,抛物线y=ax2+bx经过点A(-4,0)、B(-2,2),连接OB、AB,(1)求该抛物线的解析式.(2)求证:△OAB是等腰直角三角 如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.求抛物线的解析式如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.1 .求抛物线的解析式及对称轴 如图,抛物线经过A(-1,0),B(5,0)C(0,-5/2)三点,求抛物线对应函数解析式 如图,对称轴为直线x=7/2的抛物线经过点A(6,0)和点B(0,4)1.求抛物线解析式及顶 如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求抛物线的解析式.(2)如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求抛物线的解析式.(2)P是抛物线上一动点,过P作PM垂直于x轴,垂足为M,是否存在 如图26-7-4,已知抛物线y=x^2+bx+c经过A(1,0)B(0,2)两点,顶点为D, 如图,抛物线经过A(-1,0)、B(5,0)、C(0,-5/2)三点. 1求抛物线解析式. 2在抛如图,抛物线经过A(-1,0)、B(5,0)、C(0,-5/2)三点.1求抛物线解析式.2在抛物线的对称轴上有一点P,使PA+PC的值最小,求P点坐标. 如图13 ,在平面直角坐标系中,知抛物线经过A(-4,0)B(0,-4)C(2,0)三点 (1)若如图13 ,在平面直角坐标系中,知抛物线经过A(-4,0)B(0,-4)C(2,0)三点(1)若M为第三象限内抛物线上一动点,点M的横坐标为m,三角形AM .如图,在平面直角坐标系中,已知抛物线经过点A(4,0),B(0,-4),C(2,0)三点如图,在平面直角坐标系中,已知抛物线经过点A(4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式; (2)若点M为 如图,抛物线经过 A(-1,0)B(3,0)C(0,-3)三点 1.求抛物线的解析式和对称轴.如图,抛物线经过 A(-1,0)B(3,0)C(0,-3)三点1.求抛物线的解析式和对称轴.2.在对称轴上有一点P,使PA+PC最小,求点P的坐标.3.在对称 如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax^2+bx+c经过x轴上的点A,B.(1)求点A,B,C的坐标.(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式. 如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c经过x轴上的点A,B.(1)写出点A,B,C的坐标.(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式. 如图,在平行四边形ABCD中,AB=4,点D的坐标为(0,8),以点C为顶点的抛物线经过x轴上A,B两点(1)求点A,B,C的坐标(2)将该抛物线向上平移,恰好经过点D,求此时抛物线的函数解析式