tanx=2 x∈(π,3π/2),求[sin(π-α)+2sin(3π/2+α)]/[cos(3π-α)+1]的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 10:11:35
tanx=2 x∈(π,3π/2),求[sin(π-α)+2sin(3π/2+α)]/[cos(3π-α)+1]的值.
x)+I̫5Rx~O өlcStqfs5@l6P ȈN/>aMR>L/I c tnPF*]0M>XL]>T TS:CtY#\2Em @

tanx=2 x∈(π,3π/2),求[sin(π-α)+2sin(3π/2+α)]/[cos(3π-α)+1]的值.
tanx=2 x∈(π,3π/2),求[sin(π-α)+2sin(3π/2+α)]/[cos(3π-α)+1]的值.

tanx=2 x∈(π,3π/2),求[sin(π-α)+2sin(3π/2+α)]/[cos(3π-α)+1]的值.
[sin(π-α)+2sin(3π/2+α)]/[cos(3π-α)+1]
=[sinα-2cosα]/[-cosα+1]
=[sinα/cosα-2cosα/cosα]/[-cosα/cosα+1/cosα]
=[tanα-2]/[-1+1/cosα]
=[2-2]/[-1+1/cosα]
=0/[-1+1/cosα]
=0