求1-1/2+1/4-1/8+…+(-1)的n次方×[1/(2的n次方)]的极限,n→∞,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:56:47
x){PPHPH[h?jXk|VK5MyxzB@3~6 :y&=꘧cTO=l출\
f`X}8'h6ikol_\gu
C! VO
求1-1/2+1/4-1/8+…+(-1)的n次方×[1/(2的n次方)]的极限,n→∞,
求1-1/2+1/4-1/8+…+(-1)的n次方×[1/(2的n次方)]的极限,n→∞,
求1-1/2+1/4-1/8+…+(-1)的n次方×[1/(2的n次方)]的极限,n→∞,
lim(n→∞)[1-(-1/2)^n]/[1-(-1/2)]=1/(1+1/2)=2/3
lim(n→∞)[1-(-1/2)^n]/[1-(-1/2)]=1/(1+1/2)=2/3