若方程X^2+Y^2+2MX+M^2+5M=0表示圆,求(1)实数M的取值范围(2)圆心坐标和半径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:30:54
若方程X^2+Y^2+2MX+M^2+5M=0表示圆,求(1)实数M的取值范围(2)圆心坐标和半径
xN@_єҤĶo0{ؐ辦ݩ\,W䦂BB»N[W}ϴ邐aL3?Ŷ]8b2-)d "yqg *}NZ2[n)6laSy%89QV iqDsefMab`a購X[`S*3H\!_b0hCA#.6O7"cV=<˪x s ܵ!A'4*7](4pgxOvs'gl^.d( i:>CkHHC[>iHPU!

若方程X^2+Y^2+2MX+M^2+5M=0表示圆,求(1)实数M的取值范围(2)圆心坐标和半径
若方程X^2+Y^2+2MX+M^2+5M=0表示圆,求(1)实数M的取值范围(2)圆心坐标和半径

若方程X^2+Y^2+2MX+M^2+5M=0表示圆,求(1)实数M的取值范围(2)圆心坐标和半径
①由 X^2+Y^2+2MX+M^2+5M=0 ,可得 (X+M)²+Y²= -5M
要为园,必须 -5M>0 ,∴M0解得m

方程可变形为:(x+m)^2+y^2=-5m又知其为圆的方程则知r^2=-5m>0解得m<0;易得圆心坐标(-m,0)半径r=根号-5m

①由 X^2+Y^2+2MX+M^2+5M=0 ,可得 (X+M)²+Y²= -5M
要为园,必须 -5M>0 ,∴M<0
②(X+M)²+Y²= -5M,则圆心为(-M,0),半径为根号下(-5M)