不用球面坐标,解这三题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 23:59:00
不用球面坐标,解这三题
xTnI~Vh&븧f\ȅkMw0^ 6vgN@I8H$@첊VABBx(@͏[twW_U}UJczwQou~'{,7|waj3a*[בZՉڍ'P|"Ʀq}*fuN ^|xs^[sU#0ė IE`CJe5ӡfpIs*_c4o"!pi$Tk. s:crMpL͔fR4x#&$b!qUҜ*#fD2(P ^DFh\i>s:J*scrtlKH9[*6~{? BV9"%Z8%ξj1Lq`Rf /hjs%XiΒ3,1=~-l>d- ~"M ~|^X ?ž]x+)egztzV;U hmw_,W7 ~RZC~y:@)S,hSP:Љ:[E$;s4,u_j|Wjm,w쭽+oow?=vF 6C%FMhlfj4 SH׏Z!|:,DŽ`h+|g lc{pL[T( |s4xY g=Lg+>{WTd+@Ce sJC챫C,+|:v9`&۝EkvЇ n5/'c

不用球面坐标,解这三题
不用球面坐标,解这三题

不用球面坐标,解这三题
11.
I = ∫∫∫Ω √[1 - (x² + y² + z²)^(3/2)] dv
= ∫∫∫Ω √(1 - r³) * sinφ * r² drdφdθ
= ∫(0,2π) dθ ∫(0,π) sinφ dφ ∫(0,1) √(1 - r³) * r² dr
= 2π * 2 * (- 1/3)(2/3)(1 - r³)^(3/2):(0,1)
= 4π * (- 2/9) * (- 1) * 1
= 8π/9
12.
I = ∫∫∫Ω (x + z) dxdydz.底部是圆锥z = √(x² + y²),顶部是球体z = √(1 - x² - y²)
√(x² + y²) = √(1 - x² - y²) ==> 2x² + 2y² = 1 ==> x² + y² = 1/2
积分域在xoy面对称,x是奇函数,该积分等于0.
I = ∫∫∫Ω z dxdydz
= ∫(0,2π) dθ ∫(0,1/√2) r dr ∫(r,√(1 - r²)) z dz
= 2π * ∫(0,1/√2) (1/2 - r²) * r dr
= 2π * 1/16
= π/8
17.
z² = h²/R² * (x² + y²) ==> x² + y² = (Rz/h)² ==> Dz的面积 = π * R²z²/h²
底部是圆锥z² = h²/R² * (x² + y²),顶部是平面z = h
I = ∫∫∫Ω z dxdydz
= ∫(0,h) z (∫∫Dz dxdy) dz
= ∫(0,h) z * (Dz的面积) dz
= ∫(0,h) z * π * R²z²/h² dz
= πR²/h² * ∫(0,h) z³ dz
= πR²/h² * h⁴/4
= (1/4)π(Rh)²