二重积分求球面积用极坐标表示

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:27:03
二重积分求球面积用极坐标表示
xURPƎ/Bh / N$*U()D:V[EfR"I⓿NDL3}jr笳:{9n9?~5TQ|XSWk3iG6&|A~+M (Ay2gV9ϭr͇E/c$.8CR}Ƞ[;DsJrV) }KC4_Vn,tV}zP.Yi

二重积分求球面积用极坐标表示
二重积分求球面积用极坐标表示

二重积分求球面积用极坐标表示
二重积分下,被积函数为常数1,积分区域取xoy面上圆心为(0,0)且半径为R的圆.所求得的二重积分便是球体的表面积.(积分符号前乘以2是因为球面曲线Z有正负之分,所以要上半球面和下半球面分开积分.)

求半径是R的球的表面积。
以此球的球心为坐标原点建立直角坐标系,
则此球的表达式为 x²+y²+z²=R²
根据球体的对称性质知,球体全部表面积等于它在第一卦限表面积的8倍
∵z=√(R²-x²-y²)
==>αz/αx=-x/√(R&...

全部展开

求半径是R的球的表面积。
以此球的球心为坐标原点建立直角坐标系,
则此球的表达式为 x²+y²+z²=R²
根据球体的对称性质知,球体全部表面积等于它在第一卦限表面积的8倍
∵z=√(R²-x²-y²)
==>αz/αx=-x/√(R²-x²-y²),αz/αy=-y/√(R²-x²-y²)
∴dS=√(1+(αz/αx)²+(αz/αy)²)dxdy=Rdxdy/√(R²-x²-y²)
故 此球的表面积=8∫∫dS (区域D为x²+y²=R²在xy平面的第一象限部分)
=8R∫∫dxdy/√(R²-x²-y²)
=8R∫<0,π/2>dθ∫<0,R>rdr/√(R²-r²) (极坐标变换)
=-2πR∫<0,R>d(R²-r²)/√(R²-r²)
=-2πR[2√(R²-r²)]│<0,R>
=-2πR(2*0-2*R)
=4πR²。

收起