数列an满足a1=1,an+1=(n^2+n-入)an.(n=1,2……),入是常数1)当a2=-1时,求入及a3的值2)数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 20:23:43
数列an满足a1=1,an+1=(n^2+n-入)an.(n=1,2……),入是常数1)当a2=-1时,求入及a3的值2)数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.
xSN@}^R{CMLxݐ`FшB\T xә+_ofjd7l0iB}|| z|[5#A_$^_>|'9},uyqO!Љ-zȣ[$/(j[̍O~҈Y `;K6Q8/1p%n@ lEwɴu'bT{5( wҺw#wz%>tk_-]>jΊhyV7'^`đA)m${?&j \#/My1Wà@ J5?86؋h ٴU^ׁrmaKT9D345Y؄c6fF\ſL"('UnM_a:LdիI]E'Eʹ0芇FXJ҈b:W&

数列an满足a1=1,an+1=(n^2+n-入)an.(n=1,2……),入是常数1)当a2=-1时,求入及a3的值2)数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.
数列an满足a1=1,an+1=(n^2+n-入)an.(n=1,2……),入是常数
1)当a2=-1时,求入及a3的值
2)数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.

数列an满足a1=1,an+1=(n^2+n-入)an.(n=1,2……),入是常数1)当a2=-1时,求入及a3的值2)数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.
1)a1=1,a2=-1
根据通项公式,a2 = (1^2+1-λ)*a1.所以,我们有-1 = (2-λ)*1,λ=3.
因此,a3 = (2^2+2-3)*a2 = 3*a2 = -3.
2)为了使得an为等差数列,我们要求d = a(n+1) - an为常数.
根据通项公式,我们有,a(n+1) - an = (n^2+n-λ-1)an.
已知a1 = 1,所以,a2 = 2-λ,d = a2 - a1 = 1-λ.
a3 = (2^2+2-λ)a2 = (6-λ)(2-λ),d = a3 - a2 = (5-λ)*(2-λ).
为了得到等差数列,公差必须相等,所以,1-λ = (5-λ)*(2-λ),解得,λ = 3,d = -2.
将λ代入通项公式,我们有a(n+1) = (n^2+n-3)an,所以,a4 = -27.但是,a4 - a3 = -24 ≠ d.
因此,an不可能成为等差数列.