高数罗尔定理应用设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明 在(a,b)内至少存在一点c ,使f'(c)-f(c)=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 18:56:33
x){zƳtÔf=tהSVX/MBщ:IOvt?:@
Ӷ֧럮ߣdǔ4DM4$M[S@R}
{yd'{k$k ["}KEv6,kyٰi^ҁۦiVhj\Q03dU:*~{@<72ddM-
pz7ej($ف Y >b
高数罗尔定理应用设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明 在(a,b)内至少存在一点c ,使f'(c)-f(c)=0
高数罗尔定理应用
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明 在(a,b)内至少存在一点c ,使f'(c)-f(c)=0
高数罗尔定理应用设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明 在(a,b)内至少存在一点c ,使f'(c)-f(c)=0
构造函数g(x)=e^(-x)*f(x)
有g(a)=g(b)=0
在(a,b)内至少存在一点c,使得
g'(c)=e^(-c)*(f'(c)-f(c))=0
即在(a,b)内至少存在一点c,使得f'(c)-f(c)=0
高数罗尔定理应用设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明 在(a,b)内至少存在一点c ,使f'(c)-f(c)=0
急死我了…求大一中值定理与导数的应用这是大一的题.用到中值定理啦…高手帮帮忙…设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.证明:在(a,b)内存在一点﹩,使得f'(﹩)-f(﹩)=0.不会
高等数学中:柯西中值定理的应用设函数f(x)在区间[a ,b]上连续,在(a ,b)内可导,证明在(a ,b)内至少存在一点m,使f’(m)=[f(m)- f(a)]/(b-m).注示:f’(m)即f(x)在x=m处的导数
利用中值定理证明等式设f(x)在[a b]上连续,在(a b)内可导a
设函数f(x)在【a,b】上连续,在(a,b)内可导,则拉格朗日中值定理的结论为
关于零点存在性定理定理(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)
微分中值定理的应用设f(x)和g(x)在[a,b]上连续,在(a,b)上可导,试证至少存在一点w属于(a,b),使得f'(w)/g'(w)=[f(w)-f(a)]/[g(b)-g(w)]
设f(X)在实数范围内可导,且有f'(X)=C(常数),利用拉格朗日中值定理证明f(X)一定是线性函数老师在卷子上写了这么些字f(x)在[a,x]上应用拉格朗日中值定理解答要构造函数 y=f(x)=cx+a,c,a 为常数 麻烦
设f(X)在实数范围内可导,且有f'(X)=C(常数),利用拉格朗日中值定理证明f(X)一定是线性函数老师在卷子上写了这么些字f(x)在[a,x]上应用拉格朗日中值定理解答要构造函数 y=f(x)=cx+a,c,a 为常数 麻烦
柯西定理的应用!设f(x)在[a,b]内连续,在(a,b)可导(a>0),试用柯西定理证明存在ξ属于(a,b),使得 {f(b)-f(a)}/(b-a) =f '(ξ) *{ (a+b)/(2ξ)} 没有思路..
【中值定理证明题】设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)f(b)>0,f(a)f((a+b)/2)
涉及到使用零点定理的一道高数证明题,设f(x)在[a,b]上连续,f(a)=f(b),证明,存在Xo属于(a,b),使得f(Xo)=f(Xo+(b-a)/2)
介值定理推论的证明设f(x)在[a,b]内连续,且f(a)*f(b)
中值定理与等式证明设函数f(x)在[a,b]上连续,在(a,b)内可导,证明:至少存在一点x,使 [bf(b)-af(a)]/(b-a)=f(x)+xf'(x)
第二中值定理能用积分第一中值定理证明么?第二中值定理:设f(x)在[a,b]上可积,g(x)在[a,b]上单调,则存在ξ∈[a,b],使得 ∫(a,b) f(x)g(x)dx= g(a)∫(a,ξ) f(x)dx + g(b)∫(b,ξ) f(x)dx积分第一中值定理:若f(x
理由零点定理判断方程的根设f(x)在闭区间「a,b」上连续,且f(a)b,证明f(x)=x在(a,b)内至少有一个根
拉格朗日中值定理的证明题设f(x)在[0,1]上连续.在(0,1)内可导,求证:存在ξ属于(0,1),使f'(ξ)=[f(ξ)-f(a)]/[b-ξ]问题的题设搞错了,应该是 设f(x)在[a,b]上连续.在(a,b)内可导,求证:存在ξ属于(a,b),使f'(
微积分中值定理题目求解设f(x)在[a,b]上连续,在(a,b)内可导,a>0,证明:存在§,Ƞ∈(a,b),使得f'(§)=(a+b)/2Ƞ*f'(Ƞ)