区域由曲面z=a^2-x^2-y^2与平面z=0围成设其外表面s,体积v.证明SSx^2yz^2-xy^2z^2dzdx+z(1+xyz)dxdy为v

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:46:35
区域由曲面z=a^2-x^2-y^2与平面z=0围成设其外表面s,体积v.证明SSx^2yz^2-xy^2z^2dzdx+z(1+xyz)dxdy为v
xőJ@_ J5dI{7轲IMljMr x"(")'H-4m} S0fƉ8 fW/}VauHh2o*ӳw~?\oL.gî6Lozr٢,35ٺLd:oQYNlJ1?仪.ⶨN'A䇝08 &&@%cBXB  ]8 X'3<c.9zĨ1vM\L.uSA3E ] %6lhy z62u(5$:#֪. l

区域由曲面z=a^2-x^2-y^2与平面z=0围成设其外表面s,体积v.证明SSx^2yz^2-xy^2z^2dzdx+z(1+xyz)dxdy为v
区域由曲面z=a^2-x^2-y^2与平面z=0围成设其外表面s,体积v.证明SSx^2yz^2-xy^2z^2dzdx+z(1+xyz)dxdy为v

区域由曲面z=a^2-x^2-y^2与平面z=0围成设其外表面s,体积v.证明SSx^2yz^2-xy^2z^2dzdx+z(1+xyz)dxdy为v

区域由曲面z=a^2-x^2-y^2与平面z=0围成设其外表面s,体积v.证明SSx^2yz^2-xy^2z^2dzdx+z(1+xyz)dxdy为v 计算三重积分:fff根号下(^2+y^2+z^2)dXdydz,v是由曲面x^2+y^2+z^2=z所界定的区域 高数 三重积分一均匀物体(密度p为常量)占有的闭区域A由曲面曲面z=x^2+y^2和平面 z=0,-a 计算∫∫∫(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z与平面z=2,z=8所围成的闭区域 由曲面z=x^2+y^2和平面z=0,|x|=a,|y|=a所围成的闭区域Ω的体积是多少 计算∫∫∫(x^2+y^2)dV,其中V是由曲面z=x^2+y^2与z=1所围成的区域.就这样... 利用球面坐标计算三重积分∫∫∫x^3yzdxdydz,期中Ω是由曲面x^2+y^2+z^2=1与曲面x=0,y=0,z=0围成的在第一卦限的闭区域.顺便问下在球面坐标下x^2+y^2+z^2=r^2吗? 求∫∫∫A(x^2+y^2)dv其中A是由曲线y^2=2z和x=0绕z轴旋转一周而成的曲面与平面z=4所围成的区域?如何做急 好的可以加分 不会的不要随便乱吠 计算三重积分 ∫∫∫zdv,其中Ω是由曲面x^2+y^2=2z与平面z=2平面所围成的闭区域. ∫∫∫(5xy^2)dxdydz,其中是由曲面z=h/R(x^2+y^2)^1/2与平面z=h(R>0,h>0)所围成的闭区域 计算三重积分∫∫∫zdxdydz,Ω是由曲面z=1+√(1-x^2-y^2)与z=1所围的闭区域.rt答案是11pi/12 原题:计算三重积分,其中积分区域D是由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域. 计算由曲面z=1-x^2-y^2与z=0所围成的立体体积 计算∫∫∫(x+y+z^2)dV,其中Ω即区域范围是由曲面x^2+y^2-Z^2=1和平面z=H,z=-H(H>0)所围成. 曲面积分 ∫∫(2x+z)dydz+zdxdy 积分区域:z=x^2+y^2(0 利用高斯公式求解第二类曲面积分的题目被积项是(2xydydz+yzdzdx-z^2dxdy),S是由锥面z=(x^2+y^2)的二分之一次方 与半球面z=(2-x^2-y^2)的二分之一次方 所围成的区域边界曲面的外侧. 一道利用高斯公式求解第二类曲面积分的题目被积项是(2xdydz+yzdzdx-z^2dxdy),S是由锥面z=(x^2+y^2)的二分之一次方 与半球面z=(2-x^2-y^2)的二分之一次方 所围成的区域边界曲面的外侧. 利用高斯公式求解第二类曲面积分的题目,被积项是(2xydydz+yzdzdx-z^2dxdy),S是由锥面z=(x^2+y^2)的二分之一次方 与半球面z=(2-x^2-y^2)的二分之一次方 所围成的区域边界曲面的外侧.