数列{an}满足a1=a2=1,an+an+1+an+2=cos2nπ/3若数列{an}的前n项和为sn则s2013的值数列{an}满足a1=a2=1,a(n)+a(n+1)+a(n+2)=cos(2nπ/3),n∈N*.若数列{an}的前n项和为Sn则S2013的值为?答案是-671/2 (n),(n+1),(n+2)都是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 02:15:38
数列{an}满足a1=a2=1,an+an+1+an+2=cos2nπ/3若数列{an}的前n项和为sn则s2013的值数列{an}满足a1=a2=1,a(n)+a(n+1)+a(n+2)=cos(2nπ/3),n∈N*.若数列{an}的前n项和为Sn则S2013的值为?答案是-671/2 (n),(n+1),(n+2)都是
xRN@jF7-Eu?Y& H\J!QʆLg +~;3HLLL;wg5bZ|j3:M^zfZ X@q['_MtOko8q [\ARF% .Y^Ke%)vVZ鄶w4$,+Pi0DM ~^j,bAf۬kFFѽaRbH@Lyy&V0MHLʕB[\y0~MЬl{B[ԂgP"0 ˀ0$ `VMszW!i hzD$UbSh'`v#SHg)NF ml†Y8 )L,

数列{an}满足a1=a2=1,an+an+1+an+2=cos2nπ/3若数列{an}的前n项和为sn则s2013的值数列{an}满足a1=a2=1,a(n)+a(n+1)+a(n+2)=cos(2nπ/3),n∈N*.若数列{an}的前n项和为Sn则S2013的值为?答案是-671/2 (n),(n+1),(n+2)都是
数列{an}满足a1=a2=1,an+an+1+an+2=cos2nπ/3若数列{an}的前n项和为sn则s2013的值
数列{an}满足a1=a2=1,a(n)+a(n+1)+a(n+2)=cos(2nπ/3),n∈N*.若数列{an}的前n项和为Sn则S2013的值为?答案是-671/2 (n),(n+1),(n+2)都是下标

数列{an}满足a1=a2=1,an+an+1+an+2=cos2nπ/3若数列{an}的前n项和为sn则s2013的值数列{an}满足a1=a2=1,a(n)+a(n+1)+a(n+2)=cos(2nπ/3),n∈N*.若数列{an}的前n项和为Sn则S2013的值为?答案是-671/2 (n),(n+1),(n+2)都是

从第一项开始,3个一组,则第n组的第一个数为a(3n-2)
a(3n-2)+a(3n-1)+a(3n)
=cos[2(3n-2)π/3]
=cos(2nπ -4π/3)
=cos(-4π/3)
=cos(4π/3)
=-cos(π/3)
=-1/2
2013÷3=671,即S2013正好是前671组的和.
S2013=(-1/2)×671=-671/2

提示:本题关键是找到规律,3个一组分组后,每组的和都是定值-1/2,剩下的就比较简单了.