四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC中点. 求三棱锥P-BDC的体积
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 03:05:22
xR[N@
A4%i݂.4҈4QP"QS11UgR<.t4sq9`ô}06#jz~oglc^&9S.a>*mQ<.fxR\K)̢tz-#$xMs
֓P5 9%(PҦ{pEsM%l$0 xh};&٧
KV7Zx@"P%~a-):
/ZYor4|fވn*Ei1v6pe%!z>T<T'/5+זaXNCd
四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC中点. 求三棱锥P-BDC的体积
四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC中点. 求三棱锥P-BDC的
体积
四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC中点. 求三棱锥P-BDC的体积
三棱锥的体积=三分之一的底面积乘以高.PA垂直底面ABCD,也就垂直BDC,就是三棱锥的高
底面为三角形BDC,ABCD为菱形,∠ABC=120°,所以∠BCD=60°,BC=CD,所以△BCD为等边三角形,底面积=二分之一的底乘以高.底为1,根据角度可得高为二分之根号3,
综上 三棱锥P-BDC体积=底面积乘以高PA=四分之一.
补充一句,E点没用上,是不是P-BDE的体积啊
四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,侧面PAD是边长为2的等边三角形,且侧面PAD,见补四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,侧面PAD是边长为2的等边三角形,且侧面PAD⊥底面AB
四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC中点. 求三棱锥P-BDC的体积
四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号6,E为PC的中
四棱锥P-ABCD的底面为菱形∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC的如图,四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC中点. .在线段PC上是否存在一点M,使PC⊥MBD成立?若存
如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.求二面角A-BC-P的大小.
在四棱锥P-ABCD中,侧面PCD是边长为2的正三角形且与底面垂直,底面ABCD是面积为2√3的菱形∠ADC为菱形的锐角.(1)求证PA⊥CD(2)求二面角P-AB-D的大小
已知四棱锥P-ABCD,底面ABCD是角A=60°,边长为a的菱形,又PA垂直于底ABCD,且PD=CD,
如图所示,四棱锥P—ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直.底面ABCD是菱形,且∠ADC=60°,M为PB中点求证:平面CDM⊥平面PAB
四棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是∠ADC=60°的菱形,M为PB的中点求三棱锥BCDM的体积
急求!在四棱锥P-ABCD中,底面为菱形且角ABC=60度,PA垂直于平面ABCD在四棱锥P-ABCD中,底面为菱形且角ABC=60度,PA垂直于平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2(1)证明:BC垂直平面AMN(2)求三棱锥N-AMC的
(1)求异面直线PD,AB所成为的角(2)求证PA垂直CD(3)求二面角P-AB-D大小 四棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面ABCD垂直,底面ABCD是面积2更3的菱形,角ADC为菱形的锐角,M是PB的中点
在底面为正方形的四棱锥P-ABCD中,PA⊥底面ABCD,PA=AB=2,则四棱锥P-ABCD的体积为
四棱锥P-ABCD中,侧面PDC是变长为2的正三角形且与底面垂直,底面ABDC是∠ADC=60°的菱形,M为PB的中点,Q为CD的中点.
四棱锥P-ABCD的底面ABCD为正方形,且PD垂直于底面ABCD,N为PB中点,则三棱锥P-ANC与四棱锥P-ABCD的...四棱锥P-ABCD的底面ABCD为正方形,且PD垂直于底面ABCD,N为PB中点,则三棱锥P-ANC与四棱锥P-ABCD的
已知四棱锥P-ABCD的底面ABCD为菱形,E是PD的中点.求证:PB∥ACE
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BD,PA的中点,PA=AB=2
已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°若PB=3,求直线AB与平面PBC所成角的正弦值.
立体几何题如图,四棱锥P-ABCD的底面ABCD是菱形,AB=2,∠BAD=60°,且侧面PAB是正三角形,平面PAB⊥平面ABCD,E在棱PA上,若PC//平面EBD ①求证:E为棱PA的中点②求三棱锥P-EBD的体积