定义在R+上的增函数f(x)满足f(2)=1,f(xy)=f(x)+f(y).求f(1)、f(1)的值若f(x)+f(x-3)小于等于2,求X的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 07:57:38
定义在R+上的增函数f(x)满足f(2)=1,f(xy)=f(x)+f(y).求f(1)、f(1)的值若f(x)+f(x-3)小于等于2,求X的取值范围
xUn@~*TU*!rB=pFK@!!dcSTB!ozlsg<ⶪz߿R] TGp^xE0zgV%A@XdLahxQ?Oe*tҵ]_Q,ǂ t}?7!^q،? fn)'2bEr'38gW3AE`\q`m2D)4-}=yD斗޼D@DSS%?c~<4'(V^2rqEGzWD2jF]0I;rWzO UQ*z R^Cұe{s LPZNRq @NN=sf,a0xNGT]iOIy紉=X쾐%K!؜0 ޺?@[óE.`x @lY5u[29ř퐛M- YYs~Iړ=D]93Szؿ5ZY}p vp bK/Tx <;xuCڪ 7jE}~׊}X%Q"IPtoCl;ammt(?cVSk 3`ƨ{6Py߄?!9νG{V^&0wITFhd!b-/+Pes!xh&Q}uuqѫՌLǺš*]#rD4p?y. C["ԗ_ L<.IqN(C{C]F6|x`NɔPpג?&:1+lE :Q Q !nq4w&l;.E=ıɓX}

定义在R+上的增函数f(x)满足f(2)=1,f(xy)=f(x)+f(y).求f(1)、f(1)的值若f(x)+f(x-3)小于等于2,求X的取值范围
定义在R+上的增函数f(x)满足f(2)=1,f(xy)=f(x)+f(y).
求f(1)、f(1)的值
若f(x)+f(x-3)小于等于2,求X的取值范围

定义在R+上的增函数f(x)满足f(2)=1,f(xy)=f(x)+f(y).求f(1)、f(1)的值若f(x)+f(x-3)小于等于2,求X的取值范围
f(2)=f(2*1)=f(2)+f(1)
f(1)=0
f(4)=f(2*2)=f(2)+f(2)=1+1=2
f(x)+f(x-3)=f(x²-3x)
f(x)在R+上是增函数
x>0
x-3>0
x²-3x≤4
x>0
x>3
-1≤x≤4
∴3<x≤4

f(1*2)=f(1)+f(2)
f(1)=0
f(2*2)=f(2)+f(2)=2,则f(4)=2
此时f(4)+f(1)=2
因为f(x)是在正实数范围内的增函数,所以对于任何x大于4,f(x)+f(x-3)大于2
所以x最大值为4
又因为x-3在定义域内,所以x属于(3,4)

f(2)=f(1)+f(2) 所以f(1)=0
又知道f(4)=f(2)+f(2)=2
f(x)+f(x-3)=f(x^2-3x)<=2=f(4)
所以x^2-3x<4
还必须x-3>0
所以3

为虾米要求两次f(1)....
∵f(x)满足f(2)=1,f(xy)=f(x)+f(y)
∴当x=1 y=2时 f(1×2)=f(1)+f(2)
∴f(1)=0
用这个方法你还能求出f(0)f(4)f(8)f(16)等等……

f(4)=f(2)+f(2)=2
∴f(x)+f(x-3)=f...

全部展开

为虾米要求两次f(1)....
∵f(x)满足f(2)=1,f(xy)=f(x)+f(y)
∴当x=1 y=2时 f(1×2)=f(1)+f(2)
∴f(1)=0
用这个方法你还能求出f(0)f(4)f(8)f(16)等等……

f(4)=f(2)+f(2)=2
∴f(x)+f(x-3)=f[x(x-3)]≤2=f(4)
∵f(x)是定义在R+上的增函数
∴x(x-3)≤4
整理得(x+1)(x-4)≤0
解得-1≤x≤4
又∵f(x)定义域为R+
∴x>0 x-3>0
∴x取值范围为(3,4]
姐姐的经验是问同学要比问百度来的值得呀……
当然啦,因人而异~~^^

收起

(1)取x=2 y=1 f(2)=f(2)+f(1) 所以f(1)=0
(2)f(x)+f(x-3)=f(x^2-3x)小于等于2
即f(x^2-3x)小于等于2f(2)=f(4)
所以0 后面的应该你会了吧

∵f(2)=1,f(xy)=f(x)+f(y)
∴ f(2)=f(2×1)=f(2)+f(1)=1+f(1)=1
∴f(1)=0

∵定义在R+是增函数
∴X>0 X-3>0 X>3
又∵f(x)+f(x-3)≤2
∴f(x)+f(x-3)≤f(2)+f(2)
当f(x-3)≥f(1)
X≥4 f(4)=2
∴X≤4
∴3<X≤4