求解微分方程.dx/dy=x/[2(lnx-y)]这题我知道上下一换变成dy/dx=2lnx/x-2y/x 之后成为dy/dx+P(x)y=Q(x)格式.关键是这个格式的求解方法是什么?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:36:20
求解微分方程.dx/dy=x/[2(lnx-y)]这题我知道上下一换变成dy/dx=2lnx/x-2y/x 之后成为dy/dx+P(x)y=Q(x)格式.关键是这个格式的求解方法是什么?
xՒN@_ŝ$[\&h*b1 AD[Ax3wھbR7ܜ9Ss.{nK)E)ɦcyT9\ &Ol29%hE% ӈL0cK1We! gνz] pU6И/Hkwi#OD&*fN ZwP9bJC+4W\+N 66 2txBCq?iCт#^6%m0z l5j.:< -0_?h 2q*:CzEҸzD L|0

求解微分方程.dx/dy=x/[2(lnx-y)]这题我知道上下一换变成dy/dx=2lnx/x-2y/x 之后成为dy/dx+P(x)y=Q(x)格式.关键是这个格式的求解方法是什么?
求解微分方程.dx/dy=x/[2(lnx-y)]
这题我知道上下一换变成dy/dx=2lnx/x-2y/x 之后成为dy/dx+P(x)y=Q(x)格式.关键是这个格式的求解方法是什么?

求解微分方程.dx/dy=x/[2(lnx-y)]这题我知道上下一换变成dy/dx=2lnx/x-2y/x 之后成为dy/dx+P(x)y=Q(x)格式.关键是这个格式的求解方法是什么?
两天同乘以e^(∫P(x)dx)
则左边变成[ye^(∫P(x)dx)]',右边是Q(x)e^(∫P(x)dx)
所以ye^(∫P(x)dx)=∫Q(x)e^(∫P(x)dx)dx+C
y=e^(-∫P(x)dx)*[∫Q(x)e^(∫P(x)dx)dx+C]
带入公式计算即可,上面这个公式也就是一阶微分方程的通项公式,过程方法也是求此通项的一种好方法