PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD证明:作CQ⊥PD于Q,连接EO,EQ,EC,OF,QF,CF,所以PC2=PQ•PO(射影定理),又PC2=PE•PF,所以EFOQ四点共圆,∠EQF=∠EOF=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 11:25:03
PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD证明:作CQ⊥PD于Q,连接EO,EQ,EC,OF,QF,CF,所以PC2=PQ•PO(射影定理),又PC2=PE•PF,所以EFOQ四点共圆,∠EQF=∠EOF=
xWNG~+U5q"]?~V6 4_`Ґ@L`&@ISX꣐33Z%T*5̜w3?>Q~m5̈Y~4m^i&jŮ6Q}#D° e $XQjKwHEf$Y֗`άoɓbB$4~IFCc#k53 ?' 㬖GӨ~^>W'FjӨjF d@I~KMj~?t'ޕpo0XDƉ >TblΓΥ tvilЬNn'(ZRfQ% Xq_a;\UM"0 ˻|o!(<ɿ|ћ$CP -B.縂DIV=T9t.x^^2|$v _ }+[iPj4u =vvd4cR"w8~S\&ҩp4Bp6łloxbép0#h8fC^.ȇBC`$p0|d Koc4Dp$B)>38Jg2\:2\]hϬY4[GszPAX7w&{PT5_0@TBȕ`>he)!"~)sn@%5>Cө:>%yL0:3h_JH`} ]fy,)R!e#J` F>朔5ىf'ܳߑ640CcMn"#D Yoj(Cyh>xR2&jkaw2; +Nc=N0*CO8ڀ6^:H5gftjZ}ͻ3ί]R#kr~vij.unoóbÁ J#Ʊ랤㞟N>7+yksNXEbG;Z~lO>yp5VH0TDޡd%jgG|D_Y%N|qvT[>uy_PY^*d(yC!TC;gw~1r:PD9;w\gi-E$<)qz)2 A:ܵErҁZ!Uâ hAOQ68gJR OEV{fs%9䥓! * sG;z܌ۢ㇭|\'YYxGY|`iw=7YrH6s~_C߻JpCVzϰ'Ő_Tw^V=/:x[eod;fe Jj

PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD证明:作CQ⊥PD于Q,连接EO,EQ,EC,OF,QF,CF,所以PC2=PQ•PO(射影定理),又PC2=PE•PF,所以EFOQ四点共圆,∠EQF=∠EOF=
PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD
证明:作CQ⊥PD于Q,连接EO,EQ,EC,OF,QF,CF,
所以PC2=PQ•PO(射影定理),
又PC2=PE•PF,
所以EFOQ四点共圆,
∠EQF=∠EOF=2∠BAD,
又∠PQE=∠OFE=∠OEF=∠OQF,……………………………………………………(解释这一步)
而CQ⊥PD,所以∠EQC=∠FQC,
因为∠AEC=∠PQC=90°,………………………………………………(解释)
故B、E、C、Q四点共圆,
所以∠EBC=∠EQC=1/2∠EQF=1/2∠EOF=∠BAD,

∴CB∥AD,
所以BO=DO,即四边形ABCD是平行四边形,
∴AB=DC,BC=AD.

解释一下上面标出的地方就好了

PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD证明:作CQ⊥PD于Q,连接EO,EQ,EC,OF,QF,CF,所以PC2=PQ•PO(射影定理),又PC2=PE•PF,所以EFOQ四点共圆,∠EQF=∠EOF=
∠PQE=∠OFE OQEF 四点共圆=>∠OQE+∠OFE=180°,同角的补角相等,所以..
∠OFE=∠OEF OE=OF,都是大圆的半径,等腰对等角...
∠OEF=∠OQF OQEF四点共圆,圆周角对应相等,两个角对应OF这条弧.
∠AEC=∠PQC=90°,大圆直径AC所对的角AEC为90° ,CQ⊥PD,所以∠PQC=90°

又∠PQE=∠OFE=∠OEF=∠OQF,……………………………………………………
因为O是圆心。所以OE=OF=半径。所以角OFE=角OEF(EOF是等腰三角形)
因为∠AEC=∠PQC=90°,………………………………………………(解释)
CD过圆心。是直径。所以AEC是直角三角形。角ACE直角。而CQ⊥PD于Q是给出条件。...

全部展开

又∠PQE=∠OFE=∠OEF=∠OQF,……………………………………………………
因为O是圆心。所以OE=OF=半径。所以角OFE=角OEF(EOF是等腰三角形)
因为∠AEC=∠PQC=90°,………………………………………………(解释)
CD过圆心。是直径。所以AEC是直角三角形。角ACE直角。而CQ⊥PD于Q是给出条件。

收起

楼主您好:
这种证明方法您明白吗?
1) 圆O的两条弦AI、DG相交于F,那么有GF/DF=(GA*GI)/(DA*DI)
证明:
显然△IGF相似于△DAF,于是GF/AF=GI/DA
显然△AGF相似于△DIF,于是AF/DF=GA/DI
以上两式相乘即证
2) 圆O的两条弦AC、DG相交于E,那么有DE/GE=(DA*DC)/(GA*G...

全部展开

楼主您好:
这种证明方法您明白吗?
1) 圆O的两条弦AI、DG相交于F,那么有GF/DF=(GA*GI)/(DA*DI)
证明:
显然△IGF相似于△DAF,于是GF/AF=GI/DA
显然△AGF相似于△DIF,于是AF/DF=GA/DI
以上两式相乘即证
2) 圆O的两条弦AC、DG相交于E,那么有DE/GE=(DA*DC)/(GA*GC)
证明同1)
3) 比较1)、2),为了证明GF=DE,需要证明(GA*GI)/(DA*DI)=(DA*DC)/(GA*GC),变形得:
GA^2/DA^2=(DI/GC)*(DC/GI),注意AB、DG是两条直径,于是GA=BD,DA=BG,进一步转换为:
BD^2/BG^2=(DI/GC)*(DC/GI)
4) 显然△KBD相似于△KGB,于是BD/BG=KD/KB,BD/BG=KB/KG,两者相乘得BD^2/BG^2=KD/KG
5) 显然△KDI相似于△KCG,于是DI/GC=KI/KG
6) 显然△KCD相似于△KGI,于是CD/GI=KD/KI
7) 5)*6)有(DI/GC)*(DC/GI)=KD/KG,和4)比较即知3)的结论成立,于是OE=OF
证毕
祝楼主学习进步

收起

如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.级别不够,请自己画图. PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD. PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD证明:作CQ⊥PD于Q,连接EO,EQ,EC,OF,QF,CF,所以PC2=PQ•PO(射影定理),又PC2=PE•PF,所以EFOQ四点共圆,∠EQF=∠EOF= 如图,AB为圆O的直径,PC切圆o于C交BA延长线于p,BD⊥PC于B, 如图,p是圆o的直径AB延长线上一点,PC切圆O于点C,PC=6,BC:AC=1:2,则AB的长为? PA,PB为圆O的切线,切线EF切圆O于C,交PA于E,若PA=6cm,则三角形PEF的周长为 AB是圆O的直径,P为AB延长线上的一点,PC切圆O于点C,若PB=2,AB=6,求PC ③已知AB为圆O的直径,P为圆O外一点,PB垂直于AB,PC为圆O的切线,切点为C,求证AC//OP. CO的延长线交PB已知AB为圆O的直径,P为圆O外一点,PB垂直于AB,PC为圆O的切线,切点为C,求证AC//OP。CO的延长线 如图,已知CP为圆O的直径,AC切圆O于点C,AB切圆O于点D,并与CP的延长线相交于点B,又BD=2BP,求1.PC=3PB2.AC=PC.. 如图,AC切圆O于C,CP为圆O的直径,AB切圆O于D,与CP的延长线交于B点,若AC=PC,求1、BD=2BP 2、PC=3BP 如图,已知AB是圆o的直径,P为延长线上的一点,pc切圆o于c,cd垂直ab于d,又pc=4圆o的半径为3,求cd的长度 已知AB为圆O的直径,PD切圆O于C,BA的延长线交PC于P角P=26度,求角BCD 如图:已知AB是圆O的直径,PB⊥AB,PC是圆O的切线,切点为C.CO的延长线交PB已知AB为圆O的直径,P为圆O外一点,PB垂直于AB,PC为圆O的切线,切点为C,求证AC//OP.CO的延长线交PB延长线于E交圆O于F,若圆O的半径 已知如图AB是圆O的直径,点P为BA延长线上的一点.已知如图AB是圆O的直径,点P为BA延长线上一点,PC为圆O的切线,C为切点,BD垂直于PC为D交圆O于E,连接AC、BC、EC(1)求证BC^2=BD*BA(2)若AC=6 DE=4求PC的 如图,AB为圆O的直径,BD、PD切圆O于B、C点,P、A、B共线,求证PO×PB=PC×PD 如图所示AB为圆O的直径,PQ切圆O于T,AC垂直PQ于C,交圆O于D AB为圆O的直径,P是AB延长线上的一点,PC切圆O于点C,PC=3,PB:AB=1:3,则圆o的半径等于多少 ab是圆o的直径,p为ab延长线上一点,pc切圆o于点c,pc=4,pb=2,求圆o的半径