高一几何证明题在四棱锥P-ABCD中,底面ABCD为矩形,PA垂直于平面ABCD,M,N分别是AB,PC的中点,PA=AD=a.求证:平面PMC垂直于平面PCD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:35:41
xQAJ@`4{II
5F!%P@.!4O).\y{f;P\Mh;;Mc*~? ;Ũ}J+7I1'b7I^X/vḛ+KLxF,ipa=ݑzݳ֏Ou?EP32XrRdF;P9,.x;x1Ì1!puam) ԕsl#=z.1%aRXTj"LѼ z3)\p߰j_yS~'0
高一几何证明题在四棱锥P-ABCD中,底面ABCD为矩形,PA垂直于平面ABCD,M,N分别是AB,PC的中点,PA=AD=a.求证:平面PMC垂直于平面PCD
高一几何证明题
在四棱锥P-ABCD中,底面ABCD为矩形,PA垂直于平面ABCD,M,N分别是AB,PC的中点,PA=AD=a.
求证:平面PMC垂直于平面PCD
高一几何证明题在四棱锥P-ABCD中,底面ABCD为矩形,PA垂直于平面ABCD,M,N分别是AB,PC的中点,PA=AD=a.求证:平面PMC垂直于平面PCD
∵PA⊥CD AD⊥CD ∴CD⊥BD 取CD中点E,连接MN ME NE,∴NE‖PD ME‖AD
∴NE⊥CD ME⊥CD ∴CD⊥面EMN ∴CD⊥MN ∵AM=BM PA=AD=BC ∠PAM=∠MBC ∴△PAM≌△MBC ∴PM=MC ∴MN⊥PC ∴MN⊥面PCD ∴面PMC⊥面PCD
高一几何证明题在四棱锥P-ABCD中,底面ABCD为矩形,PA垂直于平面ABCD,M,N分别是AB,PC的中点,PA=AD=a.求证:平面PMC垂直于平面PCD
高一几何证明题四棱锥P-ABCD中,底面ABCD为平行四边形,点M、N、Q分别在PA、BD、PD上,且PM:MA=BN:ND=PQ:QD.求证:平面MNQ平行平面PBC.
高中立体几何题 已知四棱锥P-ABCD中,
高中立体几何证明题:如图:在四棱锥P-ABCD中,底面ABCD是平行四边形,E是PC的中点,求证 :PA 平行 平面EDB
高一空间几何证明题在四棱锥P-ABCD中,底面ABCD是一直角梯形,角BAD=90度,AD平行于BC,AB=BC=a,AD=2a,且PA垂直于底面,PD与底面成30度角,若AE垂直于PD,E为垂足,求证BE垂直于PD
一道高中几何证明题,在正四棱锥V-ABCD中,E为VC中点,正四棱锥底面边长为2,高为1.求异面直线BE与VA所成角的余弦.
在四棱锥P-ABCD中,底面ABCD是正方形,证明:PA//平面EDB
高二空间几何证明题,正四棱锥S—ABCD中,P、Q、R分别是SC、SB、SD上的点,且,求证:SA‖平面PQR.正四棱锥S—ABCD中,P、Q、R分别是SC、SB、SD上的点,且求证:SA‖平面PQR.这里最后一道题,答对有
高一数学几何证明题 在线等在底面是菱形的四棱锥p--ABCD 中角ABC=60度 PA=AC=a PB=PD =根号下2a 点E在PD上且 PE:ED=2:1 在棱PC上是否存在一点F使BF平行平面AEC 请加以证明 图大家自己画吧 正常画
在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD.那么这个四棱锥中是有4个直角三角形,如何证明
高一几何题,帮个忙.如图,在底面为直角梯形的四棱锥P-ABCD中,AD‖BC,∠ABC=90°PA⊥面ABCD,AD=2,AB=2根号3,BC=6,求证:BD⊥面PAC
高中立体几何题,如图,已知四棱锥P-ABCD的底面为等腰梯形 AB∥CD,AC⊥BD,PH是四棱锥的高,垂足为H如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,PH是四棱锥的高,垂足为H,E为AD的中点.(1)证明PE
高二空间几何一题在线求解正四棱锥P-ABCD中E、F、G分别在棱PB、PC、PD上且有PE:EB=PG:GD=2:1 PF:FC=1:2求证PA∥面EFG谢谢
高二数学几何分析题:在四棱锥p-ABCD中,底面为直角梯形,在四棱锥p-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90º,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点(1):求证:PB⊥DM(2):求CD与平面
几道空间几何题1.四棱锥P-ABCD中,PA垂直于平面ABCD,底面ABCD是直角梯形,AB垂直于AD,CD垂直于AD,CD=2AB,E为PC中点,求证:(1)平面PDC垂直于平面PAD(2)BE平行于平面PAD2.在四棱锥P-ABCD中,四边形ABCD为
几何证明题,如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD垂直底面ABCD,且PA=PD=2分之根号2,若E、F分别为PC、BD的种点.求证:平面PDC垂直PAD
四棱锥P-ABCD中,底面ABCD是正方形,边长为a,PD是四棱锥的高.在这个四棱锥中放入一个球,求球的最大半径
在四棱锥P-ABCD中,AD⊥CD,DB平分∠ADC,E为PC中点,证明PA‖面BDE如题