祖冲之怎样发明的圆周率?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:37:42
祖冲之怎样发明的圆周率?
xVrGPɲTη$r%?E\%Xd!a@lqROg'BN()?UݧOׯk)9ƥ*6ll: 36D^Ń)W>JGs1}pm~♒)[rp'-f:n[xSx P&u|{>Ta6ݔx

祖冲之怎样发明的圆周率?
祖冲之怎样发明的圆周率?

祖冲之怎样发明的圆周率?
纠正一下,圆周率并不是祖冲之发现的,他之前,刘徽就就计算过圆周率.
作为数学家,研究计算圆周率应该是他们的专业方向之一.
我国古代数学家对圆周率方面的研究工作,成绩是突出的.早在三国时期,著名数学家刘徽就用割圆术将圆周率精确到小数点后3位,南北朝时期的祖冲之在刘徽研究的基础上,将圆周率精确到了小数点后7位,这一成就比欧洲人要早一千多年.
祖冲之是和他儿子一起从事这项研究工作的,当时条件很差.他们在一间大屋的地上画了一个直径1丈的大圆.从内接正6边形开始计算,12边形,24边形,48边形的翻翻,一直算到96边形,计算的结果和刘徽的一样.接着,内接边数再逐次翻翻,边数每翻一次,要进行7次加减运算,2次乘方,2次开方,运算的数字都很大,很复杂,在当时的条件下,是十分困难的.祖冲之父子一直把边形算到24576边,得出了圆周率在3·1415926和3·1415927之间,精确到了小数点后7位.其近似分数是 355/113,被称为"密率".德国数学家奥托在1573年重新得出这个近似分数.当时,欧洲人还不知道在一千多年之前祖冲之就己经算出来了.后来荷兰人安托尼兹也算出这个近似分数,于是欧洲人就把这个称为"密率"的近似分数叫着"安托尼兹率".日本数学家认为应该恢复其本来面目,肯定祖冲之在圆周率方面研究的贡献,改称"祖率"才对.

割圆术
把一个圆的各个角消掉
3.1415926……

运用割圆术
就是用直线把圆分割成很多个边的多边形.

关于祖冲之是如何算得如此精密的结果,没有任何史料流传下来,这是非常遗憾的。不过根据当时的情况判断,祖冲之用的仍是刘徽的“割园术”。果真如此的话,祖冲之需要计算出园内接正12288边形和正24576边形的面积,要进行加、减、乘、除、开方等运算达130次以上,每次运算都要精确到9位数字,可以想象,在当时用罗列算筹来计算,是需要何等的精心与超人的毅力。 关于球体体积的计算,是祖冲之及其儿子祖(日桓)在数...

全部展开

关于祖冲之是如何算得如此精密的结果,没有任何史料流传下来,这是非常遗憾的。不过根据当时的情况判断,祖冲之用的仍是刘徽的“割园术”。果真如此的话,祖冲之需要计算出园内接正12288边形和正24576边形的面积,要进行加、减、乘、除、开方等运算达130次以上,每次运算都要精确到9位数字,可以想象,在当时用罗列算筹来计算,是需要何等的精心与超人的毅力。 关于球体体积的计算,是祖冲之及其儿子祖(日桓)在数学方面又一项了不起的成就。祖氏父子根据刘徽在“九章算术注”中担出的正确方法,求得了球体体积公式

收起