设函数f〔x〕对任意x,y属于R,都有f〔x+y〕=f〔x〕+f〔y〕,且x>0时,f〔x〕<0.⑴证明f〔x〕为奇函数,⑵证明f〔x〕在R上为减函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 12:04:54
设函数f〔x〕对任意x,y属于R,都有f〔x+y〕=f〔x〕+f〔y〕,且x>0时,f〔x〕<0.⑴证明f〔x〕为奇函数,⑵证明f〔x〕在R上为减函数
设函数f〔x〕对任意x,y属于R,都有f〔x+y〕=f〔x〕+f〔y〕,且x>0时,f〔x〕<0.
⑴证明f〔x〕为奇函数,⑵证明f〔x〕在R上为减函数
设函数f〔x〕对任意x,y属于R,都有f〔x+y〕=f〔x〕+f〔y〕,且x>0时,f〔x〕<0.⑴证明f〔x〕为奇函数,⑵证明f〔x〕在R上为减函数
(1) 【证明f〔x〕为奇函数,即证明 f(-x)=-f(x)】
f〔x+y〕=f〔x〕+f〔y〕,将 x=0 ,y=0 代入 ,可得:f(0)=f(0)+f(0),那么 f(0)=0
将 y=-x 代入 f(0)=f(x)+f(-x) =0 那么:f(-x)=-f(x)
因此 f〔x〕为奇函数
(2) 【证明f〔x〕在R上为减函数 ,即证明:当x1<x2 时候,f(x1)>f(x2)】
先设 x1<x2 ,由f〔x+y〕=f〔x〕+f〔y〕可得:f(x2-x1)=f(x2)+f(-x1),
∵ x1<x2,∴ x2-x1>0
由题目中:且x>0时,f〔x〕<0 可知:f(x2-x1)=f(x2)+f(-x1)
证明:1. f(0)=f(0+0)=2f(0),所以f(0)=0
f(0)=f(x+(x))=f(x)+f(-x)=0,所以f(x)=-f(-x),即f(x)为奇函数
2.f(x+1)-f(x)=f(x)+f(1)-f(x)=f(1),因为x=1>0,所以f(1)<0
所以f(x)在R上为减函数...
全部展开
证明:1. f(0)=f(0+0)=2f(0),所以f(0)=0
f(0)=f(x+(x))=f(x)+f(-x)=0,所以f(x)=-f(-x),即f(x)为奇函数
2.f(x+1)-f(x)=f(x)+f(1)-f(x)=f(1),因为x=1>0,所以f(1)<0
所以f(x)在R上为减函数
收起
显然成立
(1) x = 0, y =0, f(x+y) = f(0) = f(x) + f(y) = f(0) + f(0)
f(0) = 0
y = -x: f(x+y) = f(0) = 0 = f(x) + f(-x)
f(-x) = -f(x)
f〔x〕为奇函数
(2)d>0, f(x+d) - f(x) = f(x) + f(d) - f(x) = f(d) < 0
f〔x〕在R上为减函数
y=0时,f(x+0)=f(x)+f(0):f(0)=0;y=-x时;f(x-x)=f(x)+f(-x);f(x)=-f(-x);所以其为奇函数;令x1>x2,设x=x1,y=-x2,则,f(X1-X2)=f(X1)+f(-X2),而f(-X2)=-f(X2),则,f(X1-X2)=f(X1)-f(X2),又X1>X2,得到X1-X2>0,说明,f(X1-X2)<0,推出f(X1)-f(X2)<0...
全部展开
y=0时,f(x+0)=f(x)+f(0):f(0)=0;y=-x时;f(x-x)=f(x)+f(-x);f(x)=-f(-x);所以其为奇函数;令x1>x2,设x=x1,y=-x2,则,f(X1-X2)=f(X1)+f(-X2),而f(-X2)=-f(X2),则,f(X1-X2)=f(X1)-f(X2),又X1>X2,得到X1-X2>0,说明,f(X1-X2)<0,推出f(X1)-f(X2)<0,故得到,f(X1)
收起
证明:(1)令x=y=0,则有f(0+0)=f(0)+f(0)=2f(0),所以f(0)=0.再令y=-x,则f(x-x)=f(x)+f(-x),即f(x)+f(-x)=0,所以f〔x〕为奇函数。
(2)设x1>x2,则f(x1)-f(x2)=f(x1)+[-f(x2)]=f(x1)+f(-x2)=f(x1-x2)<0,所以f〔x〕在R上为减函数