已知数列{an}的前n项和Sn=1/2(n^2-n+2),数列bn的首项b1=1,且bn-b(n-1)=1/(2^(n-1)) (n≥2)求证存在自然数n0,对一切不小于n0的自然数n,恒有an>5bn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:45:14
xR]KP+^n#^'H^F*32D E
gdg+Bwc[Q]Eysj,=z=bjmv>v`G
P2$(25&щMMd"r@+Ƌm VW=xySFg^f3qy:Gɭmˀɘ[_eZpIJ~!Rc~##k^8,ot& ,秅!$e]wr[
已知数列{an}的前n项和Sn=1/2(n^2-n+2),数列bn的首项b1=1,且bn-b(n-1)=1/(2^(n-1)) (n≥2)求证存在自然数n0,对一切不小于n0的自然数n,恒有an>5bn
已知数列{an}的前n项和Sn=1/2(n^2-n+2),数列bn的首项b1=1,且bn-b(n-1)=1/(2^(n-1)) (n≥2)
求证存在自然数n0,对一切不小于n0的自然数n,恒有an>5bn
已知数列{an}的前n项和Sn=1/2(n^2-n+2),数列bn的首项b1=1,且bn-b(n-1)=1/(2^(n-1)) (n≥2)求证存在自然数n0,对一切不小于n0的自然数n,恒有an>5bn
1.(求an)
Sn=(1/2)(n^2-n+2)
S(n-1)=(1/2)[(n-1)^2-n+3]
an=sn-s(n-1)
=(1/2)(n^2-n+2)-(1/2)[(n-1)^2-n+3]
=n-1
2.(求bn)
bn-b(n-1)=1/2^(n-1)
b(n-1)-b(n-2)=1/2^(n-2)
用叠加法:
bn-b1=1/2^(n-1)+1/2^(n-2)+……+1/2^2+1/2
=(1/2)[1-1/2^(n-1)]/(1-1/2)
=1-1/2^(n-1)
bn=2-1/2^(n-1);
3.
an>5bn
n-1>5[2-1/2^(n-1)]=10-5/2^(n-1)
5>(11-n)2^(n-1)
当11-n≤0即n≥11时,不等式恒成立,
所以
存在自然数n0=11,对一切n0≥11的自然数n,恒有an>5bn.
1
自己想
已知数列{an}的前n项和为Sn,an+Sn=2,(n
已知数列an的前n项和sn满足sn=n的平方+2n-1求an
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
数列{an}的通项公式an=n(n+1)/2,求数列{an}的前n项和Sn.注意:是求Sn,已知an
已知:sn为数列{an}的前n项和,sn=n^2+1,求通项公式an.
已知数列{an}的前n项和为Sn,若a1=1/2,Sn=n^2an-n(n-1)求Sn,an
(1)已知数列an的前n项和为sn满足sn=an²+bn,求证an是等差数列(2)已知等差数列an的前n项和为sn,求证数列sn/n也成等差数列
已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn
已知数列{an}的前n项和Sn=n^2+1,则a1=?
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n属于正整数),求数列{an}的通项公式an
已知数列an的前n项和为sn sn=3(的n次方)+1求数列an
一道关于数列 已知数列{An}的前n项和为Sn,Sn=3+2An,求An
已知数列an的前n项和Sn,求数列的通项公式.(1)Sn=3n²-n (2)Sn=2n+1
已知数列{an}的通项公式an与前n项Sn公式之间满足Sn=2-3an求1)数列{an}的通项公式 2)数列{an}的前n项和Sn
已知数列an的前n项和sn与通项an满足a1=2,sn+1sn=an+1,求sn
已知数列{an}的前n项和Sn满足Sn=2/3an-1/3,且1
已知数列an的前n项和为Sn,且Sn=2(an-1),则a2等于
数列:已知数列{an}前 n项和为Sn,且a1=2,4Sn=ana(n+1).求数列{an}的通项公式.