证明:证 若f是[a,b]上的非负严格单调,且f(b)=1.试证:则n趋向于正无穷时积分a到b(f(x))的n次方dx趋向于0证明:证 若f是[a,b]上的非负严格单调,且f(b)=1.试证:则n趋向于正无穷时{积分a到b[(f(x))的n次方]d

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 18:47:24
证明:证 若f是[a,b]上的非负严格单调,且f(b)=1.试证:则n趋向于正无穷时积分a到b(f(x))的n次方dx趋向于0证明:证 若f是[a,b]上的非负严格单调,且f(b)=1.试证:则n趋向于正无穷时{积分a到b[(f(x))的n次方]d
x]KPǿʹ˘~lԐD(Z/z3+L>@Bvַ,$*fgy~'æB ̷TQ+tmͽ4C]k)lWYVj FġT@5CɼϓXZo~oD^|%2 &1 S.4B,΋e qp0?~JW@az?kԮvn|R or@Z 6| PTuR*[J R%愽]

证明:证 若f是[a,b]上的非负严格单调,且f(b)=1.试证:则n趋向于正无穷时积分a到b(f(x))的n次方dx趋向于0证明:证 若f是[a,b]上的非负严格单调,且f(b)=1.试证:则n趋向于正无穷时{积分a到b[(f(x))的n次方]d
证明:证 若f是[a,b]上的非负严格单调,且f(b)=1.试证:则n趋向于正无穷时积分a到b(f(x))的n次方dx趋向于0
证明:证 若f是[a,b]上的非负严格单调,且f(b)=1.试证:则n趋向于正无穷时{积分a到b[(f(x))的n次方]dx}趋向于0

证明:证 若f是[a,b]上的非负严格单调,且f(b)=1.试证:则n趋向于正无穷时积分a到b(f(x))的n次方dx趋向于0证明:证 若f是[a,b]上的非负严格单调,且f(b)=1.试证:则n趋向于正无穷时{积分a到b[(f(x))的n次方]d
对任意b-a > ε > 0,由f(x)在[a,b]非负且严格单调递增 (不能是递减的,否则易有反例),
有0 ≤ f(b-ε/2) < f(b) = 1.
于是存在N = [ln(ε/(2b-2a))/ln(f(b-ε/2))]+1 > 0,使得当n > N时成立0 ≤ f(b-ε/2)^n < ε/(2b-2a).
因此0 ≤ ∫{a,b} f(x)^n dx = ∫{a,b-ε/2} f(x)^n dx+∫{b-ε/2,b} f(x)^n dx
≤ ∫{a,b-ε/2} f(b-ε/2)^n dx+∫{b-ε/2,b} f(b)^n dx
≤ (b-a)·f(b-ε/2)^n+ε/2
< (b-a)·ε/(2b-2a)+ε/2
= ε.
即有lim{n → ∞} ∫{a,b} f(x)^n dx = 0.

证明:证 若f是[a,b]上的非负严格单调,且f(b)=1.试证:则n趋向于正无穷时积分a到b(f(x))的n次方dx趋向于0证明:证 若f是[a,b]上的非负严格单调,且f(b)=1.试证:则n趋向于正无穷时{积分a到b[(f(x))的n次方]d 设f(x)在[a,b]上连续,且严格单增,证明:(a+b)∫(上b下a)f(x)dx 证明定义在(a,b)上的任意函数f(x)必能表示为一个非负函数与一个非正函数之和 证明:若函数f(x)在[a,b]上是严格的增函数,那么方程f(x)=0在区间[a,b]上至多只有一个实根. 证明:已知函数f(x)是负无穷到正无穷上的增函数,a、b属于R,若f(a)+f(b)大于等于f(-a)+f(-b),则a+b≥0 判断F(X)的单调性并证明若f(x)是偶函数,且在(0,正无穷)上是减函数,判断f(x)在(负无穷,0)上的单调性并证明. 函数的单调性证明题已知函数y=f(x)的定义域是[a,b], a<c<b.当x∈[a,c]时,y=f(x)单调递减;当x∈[c,b]时,y=f(x)单调递增.求证:f(x)在x=c时取得最小值.【严格证明】 设f为[0,+∞)上连续的严格递增函数,f(0)=0证明:ab≤∫0到a f(x)dx+∫0到b f-1(y)dy (-1代表负一次方)当且仅当b=f(a)时,等号成立(a,b≥0) 离散数学高手进设R为非空集合A上的偏序关系:f:A→P(A),定义如下:对于任意的a∈A,都有f(a)={x|x∈A∧(x.a)∈R}证明:(1)f为单射 (2)对任意的a∈A且b∈A.若(a.b)∈R,则f(a)≤f(b)要求有证明过程,急! 函数f(x)在闭区间[a,b]上严格单调且连续,f(a)=A,f(b)=B,证明f([a,b])=(A,B) 已知a,b为实数函数f(x)=x^3+ax g(x)=x^2+bx 若两个函数的导函数乘积非负在区间I上恒成立,则两函数在区间I上的单调性一致若a<0 且a≠b 若f(x),g(x)在以a,b为端点的开区间上单调性一致,|a 指数函数单调性的严格证明 已知f(x)是定义在【-1,1】上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有f(a)+f(b)/a+b>0成立(1)判断f(x)在【-1,1】上的单调性,并证明它(2)解不等式f(x+1/2) 证明:若函数f(x)在[a,b]连续、非负,且∫f(x)dx=0,则f(x)=0. 请严格证明,AB两个集合,如果B属于A,那么B是A的真子集或者A=B.要求严格证明.不允许举例法. 连续函数在(a,b)上的a,b两点的单侧极限为无穷大(非正无穷大和负无穷大),可以举个例子么, 设函数f(x)是偶函数,且在(负无穷,0)上是增函数,判断f(x)在(0,正无穷)上的单调性,并加以证明 请问,函数y=f(x)是定义在【-1,1】上的奇函数,且f(1)=1,若a,b∈【-1,1】,a+b≠0时,有〔f(a)+f(b)〕/(a1.判断f(x)在【-1,1】上的单调性,证明 2.解不等式f(x+0.5)