难题a(n+1)=k+(2k+1)an+(k(k+1)an(an+1)) ^1/2已知a1=0求an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:26:28
xMj0⥄0E[0Lw,ihvH7Oi,;E46unxާ/0#B3T0e&^Je>7uPnD< 8e2õCp
难题a(n+1)=k+(2k+1)an+(k(k+1)an(an+1)) ^1/2已知a1=0求an
难题a(n+1)=k+(2k+1)an+(k(k+1)an(an+1)) ^1/2已知a1=0求an
难题a(n+1)=k+(2k+1)an+(k(k+1)an(an+1)) ^1/2已知a1=0求an
设b(n)=a(n)+1/2
化简为b(n+1)=(2k+1)b(n)+2(k(k+1)(b[n]^2-1/4))^1/2
移项开方化简为
b(n+1)^2-2(2k+1)b(n)b(n+1)+b(n)^2+k(k+1)=0
易知
b(n+1)+b(n-1)=2(2k+1)b(n)
反带a(n)=b(n)-1/2
得a(n+1)+a(n-1)=2(2k+1)a(n)-2k
因为a1=0 a2=k
所以
a[n]属于N
难题a(n+1)=k+(2k+1)an+(k(k+1)an(an+1)) ^1/2已知a1=0求an
a1=0,a(n+1)=k+(2k+1)an+√{[k(k+1)an](an+1)},其中k属于N*,求an
正项级数an.(a(n+1)/an)^n=k (n→∞),证明:k
数列a(n+1)=k+(2k+1)an+(k(k+1)an(an+1))^1/2 已知a1=0 求an更正a[n+1]=k+(2k+1)a[n]+2(k(k+1)a[n](a[n]+1))^1/2
数列a(n+1)=k+(2k+1)an+(k(k+1)an(an+1))^1/2 已知a1=0 求an更正a[n+1]=k+(2k+1)a[n]+2(k(k+1)a[n](a[n]+1))^1/2
请问1^k+2^k+3^k+.+n^k=?
(Ⅰ)在数列{an}中,a1=1,a(n+1)=6n-an,求an ;(Ⅱ)在数列{an}中,a1=1,an·a(n+1)=3^n,求an(3)已知数列{an}中a1=1,且a(2k)=a(2k-1)+(-1)^k,a(2k+1)=a(2k)+3^k,其中k=1,2,3…… 求an
在数列{an}中,a1=1,且对任意K∈N*,a(2k-1),a(2k),a(2k+1)成等比数列,其公比 根号下[(k+1)/k],则...在数列{an}中,a1=1,且对任意K∈N*,a(2k-1),a(2k),a(2k+1)成等比数列,其公比 根号下[(k+1)/k],则a2011的值为(
对于任意数列,规定(An)称为(An)的一阶差分数列对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=a(n+1)-an,(n属于N*),对正整数k,规定{△^k an}为{an}的k阶差分数列,其中△^k an=△^(k-1)a(n+1)-△^(k
已知数列{an}中的相邻两项a(2k-1),a(2k)是关于x的方程x^2-(3k+2^k)x+3k*2^k=0的两个根,且a(2k-1)≤a(2k)(k=1,2,3,…)求数列{an}的前2n项和S2n
已知数列{an}的前n项和Sn=2n^2+pn,a7=11,a(k)+a(k+1)>12,求正整数k的最小值其中k,k+1是下标,
已知:An=5-2n,n=2k+1 ; An=2^n,n=2k ; k属于N*,求A1+A2+...+A15
数列{an}中,满足a1=1,Sn=n^2·an (n属于N正),猜想数列的通项公式,用数学归纳法证明第二步,假设n=k时,猜想成立,即ak=2/[k(k+1)] ∴当n=k+1时,S(k+1)=(k+1)^2·a(k+1)
设数列{an}满足:若n=2k-1,(k∈N*)an=n;若n=2k,(k∈N*),an=ak 后面是2的n次
设数列{an}的通项公式为an=n²+kn(n∈N+),若数列{an}是单调递增数列,求实数k的取值范围∵an=n²+kn对n∈N+{an}单调递增n=-k/2-k/2<3/2an>a(n-1)>a(n-2)。>a2>a1∴k>-3为什么-k/2<3/2?不是应该
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n](a[n+1]))^1/2 已知a1=0 k属于N 求a[n]属于N更正a[n+1]=k+(2k+1)a[n]+2(k(k+1)a[n](a[n]+1))^1/2
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n](a[n+1]))^1/2 已知a1=0 k属于N 求a[n]属于N更正a[n+1]=k+(2k+1)a[n]+2(k(k+1)a[n](a[n]+1))^1/2
设数列{an}满足:若n=2k-1,(k∈N*),an=n,若n=2k,(k∈N*)an=ak求(1)a2+a4+a6+a8+a10+a12a+a14+a16