设P是一个数集,且至少含有两个数,若对任意a,b∈R,都有a+b,a-b,ab,a/b∈P(除数b≠0),则称P是一个数域,那么数集F={a+b根号2|a,b∈Q}为什么也是数域?我证不出.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:09:23
设P是一个数集,且至少含有两个数,若对任意a,b∈R,都有a+b,a-b,ab,a/b∈P(除数b≠0),则称P是一个数域,那么数集F={a+b根号2|a,b∈Q}为什么也是数域?我证不出.
xݒJ@F1ڍiu]݊\RtӢBbSĂb[+-*T4.Lę N2Xf?ΈT&5lwk+=ؾ =bU(ar0=]߂e$ C M%2ÁT%{pPD}>Z3H {u:y@+-Cb}jNn+YvK'g$dS1Cԥ5yC+AOTIy 3)ahsI O*@nOX䓜p2P@Q "4hB:UK*EhȄX"BŅյuPمۜ Τ<S~In)~(gTh(k

设P是一个数集,且至少含有两个数,若对任意a,b∈R,都有a+b,a-b,ab,a/b∈P(除数b≠0),则称P是一个数域,那么数集F={a+b根号2|a,b∈Q}为什么也是数域?我证不出.
设P是一个数集,且至少含有两个数,若对任意a,b∈R,都有a+b,a-b,ab,a/b∈P(除数b≠0),则称P是一个数域,那么数集F={a+b根号2|a,b∈Q}为什么也是数域?
我证不出.

设P是一个数集,且至少含有两个数,若对任意a,b∈R,都有a+b,a-b,ab,a/b∈P(除数b≠0),则称P是一个数域,那么数集F={a+b根号2|a,b∈Q}为什么也是数域?我证不出.
只要证F对“加、减、乘、除”封闭即可:
设x=a+b√2,y=c+d√2(a,b∈Q)则
x+y=(a+c)+(b+d)√2,((a+c)∈Q,(b+d)∈Q)
x-y=(a-c)+(b-d)√2,((a-c)∈Q,(b-d)∈Q)
xy=(ac+2bd)+(ad+bc)√2,((ac+2bd)∈Q,(ad+bc)∈Q)
x/y=(ac-2bd)/(c²-2d²)+[(bc-ad)/(c²-2d²)]√2,((ac-2bd)/(c²-2d²)∈Q,(bc-ad)/(c²-2d²)∈Q)
所以数集F={a+b根号2|a,b∈Q}也是数域

设P是一个数集,且至少含有两个数,若对任意a,b∈R(除数b≠0),则称P是一个数域,那么数集F设P是一个数集,且至少含有两个数,若对任意a,b∈R,都有a+b,a-b,ab,a/b∈P(除数b≠0),则称P是一个数域, 设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、a/b∈P(除数b≠0)则称P是一个数域.例如有理数集Q是数域.那么判断命题正确与否:数域必含有0,1两个数. 设P是一个数集,且至少含有两个数,若对任意a,b属于P,都有a+b,a-b,ab,a/b属于P(除数b不等于0),则P为一个数域,例如有理数集Q为数域.有下列命题:1、数域必含有0,1两个数.2、整数集是数域.3、数 设p是一个数集,且至少含有两个数,若对任意a,b属于p,都有a+b,a-b,ab,b分之a属于p,则称p是一个数域,例如有理数集是数域,有下列命题:①,数域必含0,1两个数②整数集是数域③若有理数集包含于m,则 有关高一数学一道题中一个概念解释(元素与集合)设P是一个数集,且至少含有两个数,若对任意a,b属于P,都有a+b,ab,b分之a属于P(除数b不等于0),则称P是一个数域.例如有理数集Q是数域,数集F= 设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、 ∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列命题:若有理数集Q包含于M,则数集M必为数域;为什么不对 数域.集合题.设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b,ab、 ∈P(除数b≠0),则称P是一个数域.例如有理数集Q是数域;数集 也是数域.有下列命题:①整数集是数域; ② 设P是一个数集,且至少含有两个数,若对任意a,b∈P.都有a+b,a-b,ab,a/b(b≠0∈P,则称P是一个数域.1)若有理数集Q包含于M ,则数集M必为数域.为什么是错误的? 设P是一个数集,且至少含有两个数,若对任意a,b属于P,都有a+b,a-b,ab,a/b属于P(除数b不等于0),则P为一个数域,例如有理数集Q为数域.有以下命题:1.整数集是数域;2.有理数集Q包含于M,则数集M必 设P是一个数集,且至少含有两个数,若对于任意a,b∈R都有a+b,a-b,ab,a/b ∈P(b≠0),则称P是一个数域.例如第四个正确么 为什么?设P是一个数集,且至少含有两个数,若对于任意a,b∈R都有a+b,a-b,ab,a/b 设P是一个数集,且至少含有两个数,若对任意a,b∈R,都有a+b,a-b,ab,a/b∈P(除数b≠0),则称P是一个数域,那么数集F={a+b根号2|a,b∈Q}为什么也是数域?我证不出. 设P是一个数集,且至少含有俩个数,若对任意a,b属于P,都有a+b,a-b,ab,a/b,属于P(除数b不等于0)则称P是一个数域,例如有理数Q是数域,有下列命题:A,数域必含有0,1俩个数 B,整数集是数域 C,若有理数集 设P是一个数集,且至少含有俩个数,若对任意a,b属于P,都有a+b,a-b,ab,a/b,属于P(除数b不等于0)则称P是一个数域,例如有理数Q是数域,有下列命题:A,数域必含有0,1俩个数 B,整数集是数域 C,若有理数集 设P是一个数集,且是少含有两个数,若对任意a,b∈P,都有a+b、a-b、ab、a/b∈P(除数b ≠0),则称P是一个数域,例如有理数集Q就是数域,有下列命题:1、数域必含有0,1这两个数;2、整数集是数域;3 1 设P是一个数集,且至少含有两个数,若任意a,b∈P,都有a+b,ab,a/b∈P(除数b不等于0)则P是一个数域,例如有理数集Q是数域.有下列命题:1 数域必为无限集2 存在无穷多个数域以上命题正确的是: 设P是一个数集,且至少含有两个数,若对任意a,b属于P,都有a+b,a-b,ab,a/b属于P,b除数不等于零.则称P为数域,为什么数域必为无限集 设P是一个数集,且至少含有两个数,若对任意a,b∈P(a、b可以相等),都有a+b,a的平方,根号a,丨a-b丨∈P,则称P是一个数圈.下面有结论:①数圈必含有0这个数;②数圈必为无限集;③正实数集R*是 08年福建卷文科数学第16题为何第一个对呢?福建卷(16)设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、a ∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列