函数y=f(x)的定义域为R,对任意x,y∈R,都有f(x+y)=f(x)+f(y),f(xy)=f(x)f(y)恒成立,当x不等于y时,f(x)不等于f(y),证明1;若x>0,则f(x)>0; 2:f(x)是R上的单调递增函数.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 07:58:16
函数y=f(x)的定义域为R,对任意x,y∈R,都有f(x+y)=f(x)+f(y),f(xy)=f(x)f(y)恒成立,当x不等于y时,f(x)不等于f(y),证明1;若x>0,则f(x)>0; 2:f(x)是R上的单调递增函数.
xRn@~d 6Ccf 6'M܈$L?m.> 5CsoofGo

函数y=f(x)的定义域为R,对任意x,y∈R,都有f(x+y)=f(x)+f(y),f(xy)=f(x)f(y)恒成立,当x不等于y时,f(x)不等于f(y),证明1;若x>0,则f(x)>0; 2:f(x)是R上的单调递增函数.
函数y=f(x)的定义域为R,对任意x,y∈R,都有f(x+y)=f(x)+f(y),f(xy)=f(x)f(y)恒成立,当x不等于y时,f(x)不等于f(y),证明1;若x>0,则f(x)>0; 2:f(x)是R上的单调递增函数.

函数y=f(x)的定义域为R,对任意x,y∈R,都有f(x+y)=f(x)+f(y),f(xy)=f(x)f(y)恒成立,当x不等于y时,f(x)不等于f(y),证明1;若x>0,则f(x)>0; 2:f(x)是R上的单调递增函数.
1.f(x+y)=f(x)+f(y)
令y=0
f(x)=f(x)+f(0)
f(0)=0
x≠0时,f(x)≠0
对任意的x>0
f(x)=f(√x*√x)=f(√x)*f(√x)>0
2.任取x1,x2,使x1则x2-x1>0
f(x2-x1)>0
f(x2)=f(x1)+f(x2-x1)>f(x1)
∴f(x)是R上的单调递增函数
通过这一题,要告诉你,类似的题就要学会一样的方法,一是因为xy∈R,所以学会赋特殊值,二是此种定义法球单调性学会“加一项减一项”“乘一项除一项”的方法

此题构造函数就是 f(x)=x
易证上述结论。

已知函数f(x)的定义域为R且对任意x,y∈R,有fx+y)=f(x)+f(y)+2, 已知函数f(x)的定义域为R,若f(x)恒不为零,且对任意x、y有f(x+y)+f(x-y)=2f(x)f(y).判断f(x)的奇偶性. 设函数f(x)的定义域为R,当x>0时,f(x)>1.对任意的x,y∈R有f(x+y)=f(x)f(y)成立,解不等式:f(x) 设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意xy属于R,均有f(x+y)=f(x)f(y),试判断函数f(x)单调性 证明函数F(x)增减性.函数F(x)的定义域为R,对任意x,y恒有F(x+y)=F(x)+F(y)成立,当x>0时F(x)>o 已知函数f(x)的定义域为R,且不恒为0,对任意的x、y∈R,都有f(x+y)=f(x)+f(y),求证:f(x)为奇函数 已知函数f(x)的定义域为R,且对任意x,y属于R都有f(x+y)=f(x)+f(y) 若x>0时,有f(x) 函数f(x)的定义域为R,且对任意X,y∈R,有f(x+y)=f(x)+f(y),且当x>0时f(x) 设函数fx=的定义域为R,对任意函数x,y都有f(x+y)=fx+fy,又当x>0时,fx= 已知函数y=f(x)的定义域为R,对任意x,y属于R均有f(x+y)=f(x)+f(y),且对任意x大于0对任意x,y属于R均有f(x+y)=f(x)+f(y),且对任意x大于0,都有f(x)小于0,f(3)=-3.讨论函数f(x)的单调性急呐 函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f'(x)>2,则f(x)>2x+4的阶级为 若函数f(x)的定义域是R,且对任意x、y,F(x)+F(y)=f(x+y)恒成立f(x)为奇函数若f(8)=4,求f(-1/2)的值 已知定义域为R的函数对任意实数X,Y满足f(x+y)+f(x-y)=2f(x)cosy且f(0)=0,f(π/2)=1.则 f(x)为周期函数 若对定义域为R的函数y=f(x),恒有f(x) 已知函数y=f(x) 的定义域为R,当x1 ,且对任意的实数x,y属于 R,等式f(x)f(y)=f(x+y) 成立. 设函数f(x)的定义域为R,当x1且对任意实数x,y有f(x+y)=f(x)f(y)求f(0)判断并证明f(x)的单调性 设函数f(x)的定义域为R,对于任意实数x,y,总有f(x+y)=f(x)*f(y),当X>0,0 设定义域为R的函数f(x),对任意实数X,Y满足f(x+Y)=f(x)*f(y),且f(0)≠0求证f(x)>0