已知函数f(x)=x平方+2ax+1(a∈R),f'(x)是f(x)的导函数解关于x的方程f(x)=|f'(x)|知道的大神们,赶快救救我吧
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:39:48
已知函数f(x)=x平方+2ax+1(a∈R),f'(x)是f(x)的导函数解关于x的方程f(x)=|f'(x)|知道的大神们,赶快救救我吧
已知函数f(x)=x平方+2ax+1(a∈R),f'(x)是f(x)的导函数解关于x的方程f(x)=|f'(x)|
知道的大神们,赶快救救我吧
已知函数f(x)=x平方+2ax+1(a∈R),f'(x)是f(x)的导函数解关于x的方程f(x)=|f'(x)|知道的大神们,赶快救救我吧
f(x) =x^2+2ax+1
f'(x) = 2x+2a
f(x) = |f'(x)|
x^2+2ax+1 = 2x+2a or x^2+2ax+1 = -2x-2a
x^2+2(a-1)x+(1-2a)=0 or x^2+2(a+1)x+(1+2a)=0
[x+(2a-1)](x-1) =0 or (x+2a+1)(x+1)=0
x=-(2a-1) or 1 or x=-(2a+1) or -1
ie
x= -1 or 1 or -(2a-1) or -(2a+1)
因为f(x)=|f'(x)|,所以x2+2ax+1=2|x+a|,
所以(x+a)2-2|x+a|+1-a2=0,则|x+a|=1+a或|x+a|=1-a.
①当a<-1时,|x+a|=1-a,所以a>b>c或x=1-2a;
②当-1≤a≤1时,|x+a|=1-a或|x+a|=1+a,所以x=±1或x=1-2a或x=-(1+2a);
③当a>1时,|x+a|=1+a,所以x=1或x=-(1+2a)
因为f(x)=|f'(x)|,所以x2+2ax+1=2|x+a|,
所以(x+a)2-2|x+a|+1-a2=0,则|x+a|=1+a或|x+a|=1-a. …(7分)
①当a<-1时,|x+a|=1-a,所以a>b>c或x=1-2a;
②当-1≤a≤1时,|x+a|=1-a或|x+a|=1+a,所以x=±1或x=1-2a或x=-(1+2a);
③当a>1时,|x+...
全部展开
因为f(x)=|f'(x)|,所以x2+2ax+1=2|x+a|,
所以(x+a)2-2|x+a|+1-a2=0,则|x+a|=1+a或|x+a|=1-a. …(7分)
①当a<-1时,|x+a|=1-a,所以a>b>c或x=1-2a;
②当-1≤a≤1时,|x+a|=1-a或|x+a|=1+a,所以x=±1或x=1-2a或x=-(1+2a);
③当a>1时,|x+a|=1+a,所以x=1或x=-(1+2a)
收起