已知数列{an}满足a1=1,a2=4,a(n+2)+2an=3a(n+1),(n∈N*)1)求证{a(n+1)-an}是等比数列,并求数列{an}的通项公式2)记数列{an}的前n项和为Sn,求使得Sn>21-2n成立的最小整数n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:28:39
已知数列{an}满足a1=1,a2=4,a(n+2)+2an=3a(n+1),(n∈N*)1)求证{a(n+1)-an}是等比数列,并求数列{an}的通项公式2)记数列{an}的前n项和为Sn,求使得Sn>21-2n成立的最小整数n
xT[OA+nwgv5ݾ/}4J7Zi6\Z["(&KiHg}/xkD"O&m3s||9syOsΘcBgt}KpWJ=*|wݷ#v8v;gr40W˕S628;{myցSr//z015RY$4Vl/c}C¿Zr܅*]b1gɺeX )ގQCc}Z37VW ,1hhsk\KI7p)NG,a3gV 0wUX P %ub}[4K<Ǧj ߨh%5o%lX%b;ֺV#صըq/AGB ^oZoYl#hE!Q9IQhl5jVYfA1B=pNeKMTƊZ%j`7 Sʤ19my2IRql3 tx\<{}gG|ȯwcGbp4H^#^NQUQ˄hDU"C.5$pH5a3 - ($#I\"QH4OȯT>4R"+g] .5ѧ(> iX4D-vGxצ&JCDǗlc$/Ձ\-Wx EA

已知数列{an}满足a1=1,a2=4,a(n+2)+2an=3a(n+1),(n∈N*)1)求证{a(n+1)-an}是等比数列,并求数列{an}的通项公式2)记数列{an}的前n项和为Sn,求使得Sn>21-2n成立的最小整数n
已知数列{an}满足a1=1,a2=4,a(n+2)+2an=3a(n+1),(n∈N*)
1)求证{a(n+1)-an}是等比数列,并求数列{an}的通项公式
2)记数列{an}的前n项和为Sn,求使得Sn>21-2n成立的最小整数n

已知数列{an}满足a1=1,a2=4,a(n+2)+2an=3a(n+1),(n∈N*)1)求证{a(n+1)-an}是等比数列,并求数列{an}的通项公式2)记数列{an}的前n项和为Sn,求使得Sn>21-2n成立的最小整数n
(1)a(n+2)+2an=3a(n+1)变形为a(n+2)-a(n+1)=2[a(n+1)-an],因此新数列{a(n+1)-an}是首项为3,公比为2的等比数列,所以a(n+1)-an=3*2^(n-1),两边同时减去3*2^n,整理得:a(n+1)-3*2^n=an-3*2^(n-1)=a1-3=-2,所以an=3*2^(n-1)-2
(2)由于an=3*2^(n-1)-2,即Sn-Sn-1=3*2^(n-1)-2,两边同时减去3*2^n,有Sn-3*2^n=Sn-1-3*2^(n-1)-2,所以新数列{Sn-3*2^n}是首项为-5,公差为-2的等差数列,所以Sn-3*2^n=-3-2n,所以Sn=3*2^n-2n-3,因此使得Sn>21-2n成立的最小整数n,即3*2^n-2n-3+2n-21>0,即2^n>8,又n是正整数,因此,n最少为4

关键部分都标出来了哦,看拍的照片吧~_~

祝你好运~_~

由a(n+2)+2an=3a(n+1)得a(n+2)-a(n+1)=2【a(n+1)-an】
所以{a(n+1)-an}是等比数列