(1) 1+1/(1+2)+1/(1+2+3)+.+1/(1+2+3+.+100)(2) abc=1 ,计算 1/(1+a+ab)+1/(1+b+bc)+1/(1+c+ca)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 23:16:06
xՒMR0mQd9a.L.'`zvO:Hzؓ4㓜FHP[T9]Vlt&ڋy?^rzJR7R͐<<_\ը,>R;1F//AfĊBL,@;
CVyZ\io/?|GEP&4~ih4@wgYg+d!Z"fJLmI8a璊M
(1) 1+1/(1+2)+1/(1+2+3)+.+1/(1+2+3+.+100)(2) abc=1 ,计算 1/(1+a+ab)+1/(1+b+bc)+1/(1+c+ca)
(1) 1+1/(1+2)+1/(1+2+3)+.+1/(1+2+3+.+100)
(2) abc=1 ,计算 1/(1+a+ab)+1/(1+b+bc)+1/(1+c+ca)
(1) 1+1/(1+2)+1/(1+2+3)+.+1/(1+2+3+.+100)(2) abc=1 ,计算 1/(1+a+ab)+1/(1+b+bc)+1/(1+c+ca)
(1) 1+1/(1+2)+1/(1+2+3)+.+1/(1+2+3+.+100)
=2/1*2+2/2*3+2/3*4+.+2/100*101
=2(1/1*2+1/2*3+1/3*4+.1/100*101)
=2(1/1-1/2+1/2-1/3+1/3-1/4+.+1/100-1/101)
=2*(1-1/101)
=200/101
(2) abc=1 ,计算
1/(1+a+ab)+1/(1+b+bc)+1/(1+c+ca)
=abc/(abc+a+ab)+abc/(1+b+bc)+1/(1+c+ca)
=bc/(bc+1+b)+abc/(1+b+bc)+1/(1+c+ca)
=(bc+abc)/(bc+1+b)+1/(1+c+ac)
=b(c+ac)/(bc+abc+b)+1/(1+c+ac)
=(c+ac)/(c+ac+1)+1/(1+c+ac)
=(c+ac+1)/(c+ac+1)
=1
7
(1/1000-1)×(1/999-1)×(1/998-1)×...×(1/2-1)
(1/50-1)*(1/49-1)*(1/48-1)*.*(1/2-1)
200*(1-1/2)*(1-1/3)*(1-1/4)*.*(1-1/100)
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
(1-2/1)*(1-3/1)*(1-4/1)*.*(1-2007/1)*(1-2008/1)
(1/2014-1)(1/2013-1)(1-2012-1)...(1/3-1)(1/2-1)
(1+1/2)(1+1/2^2)(1+1/2^4)^(1+1/2^32)
(1-1/2^2)(1-1/3^2)K(1-1/10^2)
(1-1/2^2)(1-1/3^2)K(1-1/10^2)
(1/2+1/3+...+1/2004)(1+1/2+1/3+...+1/2003)-(1+1/2+1/3+...+1/2004)(1/2+1/3+...+1/2003)
2000*(1-1/2*)*(1-1/3)*...*(1-1999)*(1-1/2000)
2000*(1-1/2)*(1-1/3)*.*(1-1/1999)*(1-1/2000)
(1-1/2004)(1-2003)(1-2002)…(1-1/3)(1-1/2)
(1-1/2)(1-1/3)(1-1/4).(1-1/100)
计算:(-1)-[1-(1-1/2*1/3)]*6
计算!(-1)-[1-(1-1/2*1/3)]*6
(1+2/1)(1+4/1)(1+6/1).(1+10/)(1-3/1)(1—5/1).(1-9/1)
计算 ( 1+1/2)*(1-1/3)*(1+1/4)*(1-1/5)*.*(1+1/1000)*(1-1/1001)