lim【x→0+】(1-cosx)^(1/lnx)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:46:27
lim【x→0+】(1-cosx)^(1/lnx)
x)}0Q$ 5 u+44 s*4m /!ΤJ[$< [ 5eCs k}#M-ai@¶hXt+0㐆3SϦ)5/.H̳ 

lim【x→0+】(1-cosx)^(1/lnx)
lim【x→0+】(1-cosx)^(1/lnx)

lim【x→0+】(1-cosx)^(1/lnx)
y=(1-cosx)^(1/lnx)
lny=(1/lnx)ln(1-cosx)=(x²/2)/lnx =x²/(2lnx)
lim【x→0+】lny
=lim【x→0+】x²/(2lnx)
=lim【x→0+】(2x)/(2/x)
=lim【x→0+】x²
=0
故lim【x→0+】=1