请求解答一道几何题已知,如图,∠ACD=90°,∠ABD=90°,AC=BC,连接CD.(1) 当C、D两点在线段AB同侧时,如图1,求证AD-BD=CD.(2) 当C、D两点在线段AB异侧时,如图2,线段AD、BD、CD之间的数量关系是________

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:24:59
请求解答一道几何题已知,如图,∠ACD=90°,∠ABD=90°,AC=BC,连接CD.(1) 当C、D两点在线段AB同侧时,如图1,求证AD-BD=CD.(2) 当C、D两点在线段AB异侧时,如图2,线段AD、BD、CD之间的数量关系是________
xUNGd)QNtϥ#@wflXHyvı%,vp)< \2Xyra̩:՝XkH{Q˅Q C.*ZOSa? ϛc{raV.KԸ/A:|ӤImc2}'ƒFڳk͓_ Yo;i[= ^*e{ )n¾4$ŏ-d ŁRF*#o[ F"kv#d dmM3" Fy>%.F qn,ɘ0%\Q0&D3%uN&Y记P'bxܦ̃QXXeqKl[9Z3IGB%#c>|W2yhO<!=fr\w(ΕX.i,oK2%*NŋOٗG&C{u?.I0\r0:H8}GDA}65ۈSסrVPLDWF.rvF_JֿVt+U&5 O y}qp 2`s3 $ "'c^T)+E)g(؄i.$R-S M^JUdGd1$Wmr3H!PRId4/|U_{9M只xFA1͕O>Åa> rat޻ r0B|A_H~qExjw˰Ajd2XǗ.quVf]#܃({ 䢏~ }H8~:֬l¼b\bxݞ>L S7p4਀S[[;k\93lW߽'sM(

请求解答一道几何题已知,如图,∠ACD=90°,∠ABD=90°,AC=BC,连接CD.(1) 当C、D两点在线段AB同侧时,如图1,求证AD-BD=CD.(2) 当C、D两点在线段AB异侧时,如图2,线段AD、BD、CD之间的数量关系是________
请求解答一道几何题
已知,如图,∠ACD=90°,∠ABD=90°,AC=BC,连接CD.
(1) 当C、D两点在线段AB同侧时,如图1,求证AD-BD=CD.

(2) 当C、D两点在线段AB异侧时,如图2,线段AD、BD、CD之间的数量关系是________;

请求解答一道几何题已知,如图,∠ACD=90°,∠ABD=90°,AC=BC,连接CD.(1) 当C、D两点在线段AB同侧时,如图1,求证AD-BD=CD.(2) 当C、D两点在线段AB异侧时,如图2,线段AD、BD、CD之间的数量关系是________
第⑴问:





第⑵问:


1、∵∠ACB=∠ADB=90°
∴A、C、D、B四点共圆
作CE⊥CD交AD于E,则△CDE是等腰RT△
∴CE=CD,DE=√2CD
∵AC=BC,∠ACE=90°-∠ECB,角∠BCD=90°-∠ECB
∴∠ACE=∠BCD
∴△ACE≌△BCD
∴AE=BD

全部展开

1、∵∠ACB=∠ADB=90°
∴A、C、D、B四点共圆
作CE⊥CD交AD于E,则△CDE是等腰RT△
∴CE=CD,DE=√2CD
∵AC=BC,∠ACE=90°-∠ECB,角∠BCD=90°-∠ECB
∴∠ACE=∠BCD
∴△ACE≌△BCD
∴AE=BD
∴AD-AE=AD-BD=DE=√2CD
2、AD+BD=√2CD
作CD的垂直线交DA的延长线于E
证明同(1)

收起

图和文字对不起来啊