设A为2阶矩阵,α1,α2是两个线性无关的二维向量,Aα1=O,Aα2=2α1+α2,求A的非零特征值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:40:15
设A为2阶矩阵,α1,α2是两个线性无关的二维向量,Aα1=O,Aα2=2α1+α2,求A的非零特征值.
xPKN0-14:pp Ж*hY !X4ZTnSY 84p.,yk\1- 'U/W~꾩["JC1ۯ>(X-8)\ngw^ SCCw(RH^LDxA -U*+ @4#(-NϪE4KDb'sd4afd%uV"j 060eL %Dp#?q?K}

设A为2阶矩阵,α1,α2是两个线性无关的二维向量,Aα1=O,Aα2=2α1+α2,求A的非零特征值.
设A为2阶矩阵,α1,α2是两个线性无关的二维向量,Aα1=O,Aα2=2α1+α2,求A的非零特征值.

设A为2阶矩阵,α1,α2是两个线性无关的二维向量,Aα1=O,Aα2=2α1+α2,求A的非零特征值.
其实,把 A^2a2=Aa2 改写下,为 A(Aa2)=Aa2=1*Aa2 ,
说明 1 是 A 的特征值,对应的特征向量为 Aa2 ,也即 2a1+a2 .

Aa1=0,则λ1=0,
Aa2=2a1+a2
AAa2=2Aa1+Aa2
A^2a2=Aa2
(A^2-A)a2=0
(λ^2-λ)a2=0
λ=0,1
非0特征值为1

设A为2阶矩阵,α1,α2是两个线性无关的二维向量,Aα1=O,Aα2=2α1+α2,求A的非零特征值. 特征值特征向量设α1,α2是3阶矩阵A的属于特征值λ1的两个线性无关的特征向量,为是么α1+α2是2A-E的特征向量? 设A为n阶可逆矩阵,α1,α2,…αn为 n个线性无关的n维列向量.证明向量Aα1,Aα2,…Aαn线性无关. λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,求证α1,α2线性无关. 设A是m*n阶矩阵,则方程组AX=0仅有零解的充要条件为()1、A的列向量组线性无关;2、A的列向量组线性相关;3、A的行向量组线性无关;4、A的行向量组线性相关. 设入1入2 是矩阵A的两个不同的特征值,a1a2 分别属于特征值入1入2 的特征向量,证明:a1a2 线性无关 设λ1 λ2 是矩阵A的两个不同特征值,对应的特征向量分别为α1 α2设λ1、 λ2 是矩阵A的两个不同特征值,对应的特征向量分别为α1、 α2则α1、 A(α1+α2)线性无关的充分必要条件是A. λ1=0B. λ2=0C. 设入1入2是矩阵A的两个不同的特征值对应的特征向量分别为a1a2,则证明a1,A(a1+a2)线性无关的充分必要条件充分必要条件是入2不等于0 设入1入2是矩阵A的两个不同的特征值对应的特征向量分别为a1a2,则证明a1,A(a1+a2)线性无关的充分必要条件最后打掉了。充分必要条件是入2不等于0 设1为3阶实对称矩阵A的2重特征值,则a的属于1的线性无关的特征向量个数为 设A是n阶矩阵,α1,α2,α3是n维非零向量,如果Aαi=iαi(i=1,2,3),证明α1,α2,α3线性无关. 已知λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,求出α2,(A^2)×(α1+α2)线性无关的充分必要条件. λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,求α1,A(α1+α2)线性无关充要条件 求线代帝,关于矩阵的相似和对角化的一道题设A为三阶矩阵,α1、α2、α3是线性无关的三维向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3,求可逆矩阵P,使得P(-1,上标)AP为对角矩阵 一个三阶矩阵的秩为1,那么它的两个特征向量是线性相关还是线性无关? 设向量组α1,α2,……αs能由向量组β1,β2,……βt线性表示为(α1,α2,……αs)=(β1,β2,……βt)A,其中A为t×s矩阵,且β1,β2,……βt线性无关,证明:α1,α2,……αs线性无关的充分必要条件是R(A 设A为m*n矩阵,则齐次线性方程组AX=0仅有非零解的充分必要条件是()1A的列向量组线性无关2A的列向量组线性相关3A的行向量组线性无关4A的行向量组线性相关答案是D,为什么?顺便也请解释一 设A为m*n矩阵,则齐次线性方程组AX=0仅有零解的充分必要条件是()1A的列向量组线性无关2A的列向量组线性相关3A的行向量组线性无关4A的行向量组线性相关