证明设n阶矩阵A满足(A-I)(A I)=O,则A为可逆矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:30:30
证明设n阶矩阵A满足(A-I)(A I)=O,则A为可逆矩阵
x){ٌ彜/glu|{m5u=55<5muvt|c/ l)Ѯ_`gC(XkNXV\Z`d~\(;N}b{:u :`k:ϗ|ԹB)<btaz @^T

证明设n阶矩阵A满足(A-I)(A I)=O,则A为可逆矩阵
证明设n阶矩阵A满足(A-I)(A I)=O,则A为可逆矩阵

证明设n阶矩阵A满足(A-I)(A I)=O,则A为可逆矩阵
(A-I)(A I)=O,是(A-I)(A+ I)=O吧.A²-I=0 A²=I(单位矩阵,可逆),A²可逆,
n=A²秩≤A秩≤n ∴A秩=n ,A可逆,