计算d/dx∫(x,0)(x/(1+t^2)dt)

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 10:45:06
计算d/dx∫(x,0)(x/(1+t^2)dt)
x){nuSS*u֨1Ԩ0.3L)ѴI*'FΆ8p䤖(% %y`N QgWQ`X TQ 6*$ TR5hBtb,LBC"ZS@'j+e*26yv|^

计算d/dx∫(x,0)(x/(1+t^2)dt)
计算d/dx∫(x,0)(x/(1+t^2)dt)

计算d/dx∫(x,0)(x/(1+t^2)dt)
∫(x,0)(x/(1+t^2)dt)
let
t = tana
dt = (seca)^2 da
t = x,a =arctan(x)
t =0,a = 0
∫(x,0)(x/(1+t^2)dt)
=∫(arctan(x),0)xda
= x [a](arctan(x),0)
= x( arctanx )
d/dx(∫(x,0)(x/(1+t^2)dt)) = arctanx + x/(1+x^2)