设0<a<b,证明不等式 (2a)/(a^2+b^2)<(lnb-lna)/(b-a)<1/(ab)^0.5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:36:11
设0<a<b,证明不等式 (2a)/(a^2+b^2)<(lnb-lna)/(b-a)<1/(ab)^0.5
x){nZNu"Hyٌ';z|_DM}8#8#M*$ݜ];ɎM;ut@t4udM4$M4DXSr@5@vk]}ً};m5P|b_\g U

设0<a<b,证明不等式 (2a)/(a^2+b^2)<(lnb-lna)/(b-a)<1/(ab)^0.5
设0<a<b,证明不等式 (2a)/(a^2+b^2)<(lnb-lna)/(b-a)<1/(ab)^0.5

设0<a<b,证明不等式 (2a)/(a^2+b^2)<(lnb-lna)/(b-a)<1/(ab)^0.5
设f(x)=ln x,则f(x)在[a,b]上连续,在(a,b)上可导,
则至少存在一点c∈(a,b)使得f'(c)=[f(b)-f(a)]/(b-a)
f'(x)=(ln x)'=1/x,左边=(2a)/(a^2+b^2)