lim(x趋向于0)f(2x)/x=1,且f(x)连续,则f'(0)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 18:17:35
lim(x趋向于0)f(2x)/x=1,且f(x)连续,则f'(0)=
x)ըx鄉OvhiUhW<1%MBywy13M]@&H ]v6Է M HX D7PB4X.H.V?ڨB ,1D$Ai<;i@Y" @l.0odGm M~OO Mpƾ Sc!P i

lim(x趋向于0)f(2x)/x=1,且f(x)连续,则f'(0)=
lim(x趋向于0)f(2x)/x=1,且f(x)连续,则f'(0)=

lim(x趋向于0)f(2x)/x=1,且f(x)连续,则f'(0)=
lim(x趋向于0)f(2x)/x=1,f(x)连续,则f(0)=0
f'(0)=lim [f(2x)-f(0)]/[2x-0]=lim f(2x)/(2x)=1/2

作变量变换 2x=t
则 x=t/2
当 x→0 时,t→0
lim(x趋向于0)f(2x)/x=1,
lim(t趋向于0)f(t)/(t/2)=1,
2*f'(0)=1
f'(0)=1/2