在平面直角坐标系xoy中,直线l与抛物线y²=4x相交于不同的A、B两点(1)如果直线l过抛物线的焦点,求OA向量·OB向量的值(2)如果OA向量·OB向量=-4,证明直线l必过一定点,并求出该定点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 07:34:15
在平面直角坐标系xoy中,直线l与抛物线y²=4x相交于不同的A、B两点(1)如果直线l过抛物线的焦点,求OA向量·OB向量的值(2)如果OA向量·OB向量=-4,证明直线l必过一定点,并求出该定点
xSKoQ+&& 0)Il"ClYM]%6&ehyiЖNF )3Ŀ=+gNZԺ41qsg9w7a#[8jv7_fOfϩYc;:/D#:-?QMtrA'5jVQlN[i)gLJ=+ $2AͼX6NhÐ"|K;H *6rl%f5XWʼnmt+U:p_A͉b6zmAtxS:ϟSdoDxo)5 qb e{7'Ш 7{PT>~I mjOl 'c*$ 45 t3v+yASpщS(- $4<h3+4g.bB %kA/i(~ՃfO« IBqfc'7U[t7CL^n2GF鋨"A{6 ybZY^_iYy~< A%xg>r^w`znl-

在平面直角坐标系xoy中,直线l与抛物线y²=4x相交于不同的A、B两点(1)如果直线l过抛物线的焦点,求OA向量·OB向量的值(2)如果OA向量·OB向量=-4,证明直线l必过一定点,并求出该定点
在平面直角坐标系xoy中,直线l与抛物线y²=4x相交于不同的A、B两点
(1)如果直线l过抛物线的焦点,求OA向量·OB向量的值(2)如果OA向量·OB向量=-4,证明直线l必过一定点,并求出该定点

在平面直角坐标系xoy中,直线l与抛物线y²=4x相交于不同的A、B两点(1)如果直线l过抛物线的焦点,求OA向量·OB向量的值(2)如果OA向量·OB向量=-4,证明直线l必过一定点,并求出该定点
(1)抛物线焦点为(2,0),因为直线过该焦点,那么设直线方程为Y=KX-2K,联立直线方程与抛物线方程,可将直线方程整个平方后联立,得到K^2X^2-4X(K^2+1)+4K^2=O,根据根系关系得到XA*XB=4,YA*YB=-8(交点在一,四象限,必然为负),那么OA*OB=XA*XB+YA*YB=-4
(2)设直线方程为Y=KX+B,同样联立方程得到,K^2X^2+2X(KB-2)+B^2=0,同样用根系关系得到XA*XB=B^2/K^2,YA*YB+4B/K,带回已知,得到B=-2K,再带回直线方程,可证出该直线必过抛物线焦点.

上述的计算是错的,抛物线的方程式为y²=4x,则焦点是(1,0)
所以上述的计算是错误的

在平面直角坐标系xOy中,直线l与抛物线y^2=2x相交于A,B两点.求证;直线直线l过点T(3,0)那么在平面直角坐标系xOy中,直线l与抛物线y^2=2x相交于A,B两点.(1 )求证;“如果直线直线l过点T(3,0) 平面直角坐标系xOy中、直线l与抛物线y的平方=2x相交于A.B两点 数学一道抛物线的题在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点,如果直线l过抛物线的焦点,求向量OA*向量OB的值 在平面直角坐标系xOy中,直线l与抛物线y^2=2x相交于A.B两点,求证:如果直线l过点T(3,0),那么向量OA·OB=3 在平面直角坐标系xoy中,直线l与抛物线y^2=4x相交于不同的A,B两点如果向量OA*向量OB=-4,证明直线l必过一定点,并求出该定点 在平面直角坐标系xoy中,直线l1同时与椭圆c1:2分之x2加y2=1和抛物线y2=4x相切,求直线l的方程 在平面直角坐标系xOy中,设之线L与抛物线y方=4x相交于A,B两点,OA→.OB→=-4.证明直线 在平面直角坐标系xOy中,设之线L与抛物线y方=4x相交于A,B两点,OA→.OB→=-4.证明直线 在平面直角坐标系xoy中,直线y=-x绕点o顺时针旋转90度得到直角l 在平面直角坐标系xoy中,直线y=x向上平移1个单位长度得到直线l,直线l与反比例函数y=k/x的图像的一个交点,在平面直角坐标系xOy中,直线y=x向上平移1个单位长度得到直线l,直线l与反比例函数y=k/ 数学附加在平面直角坐标系xoy中,过点C(2,0)做直线与抛物线y^2=2px(p>0)相交于M、N两点.在平面直角坐标系xoy中,过点C(2,0)做直线与抛物线y^2=2px(p>0)相交于M、N两点.(1)(1)若直线l的方程2x-y-4=0,CN/CM= 坐标系与参数方程在以直角坐标系xOy的原点O为极点,以x轴正半轴为极轴的极坐标系(与直角坐标系xOy取相同的长度单位)中,直线l的极坐标方程为ρcosθ-ρsinθ+4=0,曲线C在平面直角坐标系xOy中 数学问题,希望好人能解答在平面直角坐标系xOy中,抛物线E的顶点在原地,经过点A(2,2),其焦点F在x轴上,直线FA与抛物线E交与另一点B.(1)求抛物线C标准方程(2)设直线l是抛物线E的准先,求 在平面直角坐标系xoy中,直线L与抛物线y^=4x相交于不同的A,B两点(1)如果直线l过抛物线的焦点,求向量OA*OB的值(2)如果向量OA*OB=-4,证明直线L必过一定点,求出该定点. 在平面直角坐标系xoy中,直线l与抛物线y²=4x相交于不同的A、B两点(1)如果直线l过抛物线的焦点,求OA向量·OB向量的值(2)如果OA向量·OB向量=-4,证明直线l必过一定点,并求出该定点 平面直角坐标系xoy中,直线L与抛物线y^2=4x交于不同的A、B两点 如果:向量OA乘向量OB=-4,证明直线L必过一 平面直角坐标系xoy中,直线L与抛物线y^2=4x交于不同的A、B两点 如果:向量OA乘向量OB=-4,证明直线L必过一 我想问问一个过程为什么!在平面直角坐标系xoy中,抛物线y=mx^2-2mx-2(m≠0)与y轴交于(2)中的问为什么直线l一定要经过点A和点B呢?在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0)与y轴交于点A,