定积分的高数数学题设函数f(x)在区间[a,b]上连续,且f(x)>=0,若∫(b a)f(x)dx=0,证明f(x)恒等于0我解答的是f(a)>=0,f(b)>=0,任取c属于[b-a],所以∫(b a)f(x)dx=f(c)(b-a)=0,因为b不等于a,c为[a,b]上任取的一点,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 08:35:48
xRN@~m!ښ
G@GR4b0Rw1;+8mdfdoofRaG.Xy}ۼ9p}c+M)-C*u1=hIFAZ݉QYҷ49v5<{;E6ƹU[i`Sn7<8=7ࡋ䄾% /fUޔYBUpct3zuшsH1s/Db?-ρP rD.xmѯ@y4n'J(ZWS&7k%RO-ϨE kyHf0cg 닧|~)ÔN
,6
定积分的高数数学题设函数f(x)在区间[a,b]上连续,且f(x)>=0,若∫(b a)f(x)dx=0,证明f(x)恒等于0我解答的是f(a)>=0,f(b)>=0,任取c属于[b-a],所以∫(b a)f(x)dx=f(c)(b-a)=0,因为b不等于a,c为[a,b]上任取的一点,
定积分的高数数学题
设函数f(x)在区间[a,b]上连续,且f(x)>=0,若∫(b a)f(x)dx=0,证明f(x)恒等于0
我解答的是f(a)>=0,f(b)>=0,任取c属于[b-a],所以∫(b a)f(x)dx=f(c)(b-a)=0,因为b不等于a,c为[a,b]上任取的一点,所以成立,这样做行吗?
如果这样不行的话有好的做法吗?
定积分的高数数学题设函数f(x)在区间[a,b]上连续,且f(x)>=0,若∫(b a)f(x)dx=0,证明f(x)恒等于0我解答的是f(a)>=0,f(b)>=0,任取c属于[b-a],所以∫(b a)f(x)dx=f(c)(b-a)=0,因为b不等于a,c为[a,b]上任取的一点,
定积分中值定理是至少存在一个c,满足∫(b a)f(x)dx=f(c)(b-a),所以不能任取
大一高数,一条定积分的计算设函数,求F(x)的单调区间和凹凸区间.
定积分的高数数学题设函数f(x)在区间[a,b]上连续,且f(x)>=0,若∫(b a)f(x)dx=0,证明f(x)恒等于0我解答的是f(a)>=0,f(b)>=0,任取c属于[b-a],所以∫(b a)f(x)dx=f(c)(b-a)=0,因为b不等于a,c为[a,b]上任取的一点,
设sinx/x是f(x)的一个原函数,求x^3f'(x)在0到1区间上的定积分
设函数f(x)在区间[a,b]上连续,且f(x)>0,则方程定积分a到x f(t)dt+定积分b到x 1/f(t)dt=0在(a,b)上的根数
复变函数的上,运用留数定理求实变函数e^(-x^2)在区间(-∞,∞)上的定积分,函数原型为正态分布留数定理计算定积分中有一种类型是这样的:求实变函数f(x)在积分区间(-∞,∞)上的定积分;复变函
设函数F(x)在区间【a,b】上连续,又F(x)是f(x)的一个原函数,F(a)=-1,F(b)=-3.则定积分a到bf(x)dx等于多少
请教一道和定积分有关的高数题目求函数f(x)=∫(上限x,下限0) (t-1)(t-2)dt 在闭区间[0,3]上的最大值和最小值.
证明题求定积分设函数F(X)在区间[a,b]上连续,单调增加,F(X)=1/(x-a)倍的{定积分f(t)dt,积分区间a到x,X属于(a,b]}试证明F(X)在区间(a,b]上恒有F(X)的导数大于等于0
函数f(x)=lnsinx,求x在 区间(0,∏/2]f(x)的定积分值.
【高数】定积分 设f(x)连续,f(0)=1,则曲线y=∫(上限x,下限0) f(x)dx 在(0【高数】定积分设f(x)连续,f(0)=1,则曲线y=∫(上限x,下限0) f(x)dx 在(0,0)处的切线方程是?
设f(x)在区间[0.1]上连续,函数F(x)是上限为x下限为0,tf(cost)的定积分,判断F(x)在[-π/2,π/2]的奇偶性
根据定积分的几何意义证明下列等式 设f(x)是周期为t的函数,且在任意区间强可积,则 定积分a到a+t f(x)dx=定积分0到t f(x)dx
高数证明题:设函数f(x)在区间[0,1]上连续,证明
那个关于定积分的题目的答案看不懂啊 设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx
求函数f(x)=√(4-x^2)在区间[-2,2]上的定积分
高数,高数 积分上限函数的一道题 设f【x】在【0,无穷】内连续,且f【x】》0,证明F【x】在定义范围内为单调增函数{大一高数p241页上例7}
定积分的定义是这样的:设函数f(x)在区间[a,b]上有界,这里有界怎么解释呢?在区间上连续不行吗?不是问他的定义,而是解释为什么要有界?
高数 定积分求:f(x)=(积分上限1,下限0,被积表达式为[(t-x)的绝对值dt]) 在区间[0,1]上的最大值和最小值...