数学皇冠上的明珠指的是什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 15:00:15
数学皇冠上的明珠指的是什么
x}[S#I_aԅ٧}{1ۇ=cvގIݯ@B e?eZzGR肮ޙ2 Rf_2v]TN 1k]Lڰ"~Z ʢ ++Q?ް[yZE!׮m_B.Em ;vjqWE)vHdE'# @a3<%jQ'1zzZ؁[nO3"ܖ ٥>ml~D7F{Wp>6+2w?,@VhF_bʄDnWo?w~om(2)e[ttj{1E.U߉(OLdjr؊Ehvvp-m| 6 o ,nu"fR6r\|U.,u!JaludL8Z<&4o,ʍ]ށܣ9=ÇƤ-ѕ 01tE-(bEȠmcHpŽHnY.辛7d<(6uxޏdaai߸OF;%}}تHG F-(z[лF7s¢uݫ9`Ia_hs y+$7IzZTadDIq}V%/h<$S0j$K"z9޷*Q-L?b17Wm˝^OIJיBVj?H_-ڟeݶ 3I$K.owfd'= aۡ*eA\4- TuCzNEYVU1p "Q:w9<0l n#"صM~gsEѹƻlK0؀ҙ&I [ fKR髉1QLcXΰ͚B0ï ,5̔Uj%\a5>!f^\[gnKci1;aAyq 0DDGn#g2!\vhОhVE["Do.Z* gցOFv#qFK{aUVӎ"ˊrD&]S4T>ٵn-DtqVĥq,V8_%!s`ذ=nU-;)Ĭao fm0W|TLy!X H, `WFYYYt6(N}AʤT|*El j@aeo  ,2Yo3NVP+rJLa)Y)ӅxF]HXBP Y9!+s_˫Rp:lzn~،$B)vGȭW߮Y1k+7zdW!2L 7W2A6Rƒ)ɣc¤bF7VCsd-k ı,+Ninuw޼Z^}׃ %HaNo//Uxo?Z}NC$nWY2ipYS:s╕3Z2Nz[в/4l|[{L=LIFVAl!-1Wb2N\ - >Nm&59i;Bт[+^qe~4b)C q i:@Ȉ@`CX_,%Mt1R>u۩Q~:8i܂<=[$=Q$$1TAdyVKT1SҾsύ a@9(i+jwo^f9?-&ed E`/+oq6OIm6X6wGpL7NmZa ,U׉FirTmSBk Z1i}ly)"A l9d3}{]~Xyͻo,,7,/HnGA ?:߾~?#p5dCԜXBíI#6L2"rJʅ *9ޤ}+^_ uW},4}̗VQO1l_.w0{.D#jT>޼[nw|.zWd Mf97M]/#~=F ͟HXs "H"i"ˈ"\UDedi"\ #w_2"q!,mQEQϡDgG[c?B"$kHOA$Y*D>N"[yPBcTbh%rbG-Q \ƟO/]OLhM1_J2I3F>h2l.Em)tSᤌ('7tR~4ee/0/g?}5GsPB.޾_&f{OpQ 6Jڣ|hЇJ^I L^qfsǸ)X')Ji~V%RMyڏTuS+rU$*9|I,.i.k5@7ov/gQ2{oz &P[jtIsE"(2W3v8A^ĭ2%(rST{ }aQK&4\/Jߙ]-ٵvT~ge(wEI!G> 6:|yʫ7 2v#ؠD&l.NPѮuFhd؊[4'A%E'?w>3!oAϐ\(|~NH`]sF6$WZS>:rO y&lϫ(?B5݃7(?Wz5<~tVk}g= /QQI4RkahttGunk:L Y5xITf xa5+,; ">%(3ICqrEcoP=F̎)qnT#m|;pqާk;>73Wk|Q XSE;kn'֫Z7T-2@|ڏ "Ad`oL 6 afE[{]EDtDeC=kH#7PӍ57]Q[=Sɉ`9olMz^+X!eܧ($ay 9TO@;Aѽ1^`o(HTvі+0v~pde;p84]>l<'U&\iLQE:v tMՎ{&*0bLhe٥BbUv­,\Od&"}lL=4J1Lש:61P:n&\,s7* "l%EhRܩ_s49tT}b1l4` ZD VtiÛ0bRa7 bi!w;N<;-ya|ㅚ7i۟G?X]k#Y$JW+{. <Yj$? vA̚2K "c{Q1] 6H˜5~w3ZǑhfwdXsv,H{xqfZ!lfD z'I(-J f݆aAJ6 LDƌrw#$n!֤td1AĄ][j[QV^}WaK.>2RYf44ժi#W'BJYѯ7EEiudIÈ$n3#Se{Ad#"OX\SD~WL "l )r!!E*$ҷ4Q;(ފ[ޕ4Xj٥0/rсdN1 123fiJed!9 *8usjatA/kƆ6VbQ8EFbpC#䪅TYpW,RQ= =e|1;@B(yHdȭbW PISYyf޹A N.m"=oq[]# VDžd+w:HkcRqZ%Z8lCϴB,BpyR&J3b>v#V*f]&l%.3BK:|;/vFVԂ՗&zݾݾQu``zFjkͨy48a͓fL/3o(D=myaԅ"p( g];IC1a 9Zli&ĸRhẘY0&yŋx#{EF!6̉ "8攃WYوw,8| :17R\ݠ9\bo5&"VtOD.\K]/P:;u8/APBS$ly却AkfyLjRf<_Q'59 *1bY8ѡ()7^nMmfE,4|2V|Uk`uU~&p_qlv Mºx٬HM771X 3D`Xjفdqtsڞ\rζ ?Rkdڙ4CæO7Sgu j yQ^ό3DPwLlphWL~w 9 Li 1Ur|3ɍgԙI~z;ib><~=&py aO-/#Gx?}#^uUqյ_G{ ~ɳOD)0識m 'g_?Ee~ktIsQ.E/WskKZE2 ZF0@;dKF=#H#/y*o&kt# oD ^tٮCJvېx[0ꙝgv?h7RRTD=&ӟ8L''3ܞ0)0#ɬNj\TN~&Mc_mmNm@oӗNnW@:oB&tϝBuĜǡc'),_LޟeQ"U_KfR>'R͚!S(/fS=/J~>B~FDac0s;_c7:?Ug[)Ξs ֝' Ϗ'Eƍ}e4 t< ȝ^ӕ0*9?-JZaʦۨPx J]]Sђ֋"@CsZk);;Q<@\tVC.4zVvQv2_IB>۱W;no#F]X.U RqX.u='IQ@2N)giձHtz7hu{m@«@Yum '>8$\d4i^,hƠbgT7ljV:ԟ2AN Mm*]mRB:Ign"ü;Ccaod 1_tS4BTCNI K@1!U)MlG{t=U^.(O; x>v-: dNߴuu::(th*A2NH !MQ*x2QQIYo&D5"sgFTLűݠg;"L곲v!O)[.'s@VmնAY"w ozv=C5P '~<:rI@rV@SrE+/:u,9]ڱͱ=8'#1YYȂr ۅ7!8u IT4U&rk>O_[njK ~N3u#Δ5:$77leSs͋*̰0d7A.`4^n$ܩQ= wB :IO>Fpێ޲km%ѝgHSܨ2fV)aH28>Ӆ.覃gVkB<=Us}%=eё{>.G&% Z/Zwr M|M]yOm$5X4{SyL>Wcs>SQ۔ N,^=*EeU8Pў|.z|GUV9bNŰd:Xq}c: 1ݱ?đuV1 I']Q0E({YI.۶}@)98T5dgtJ!$BAZ)H&08ę?)yl%=璃 yql%n zVlb!B#ǁk4:u>Kct.n@^%'[4[XIgw7<;(ikNCJ)\kPD(b#r|Ά jPbd~O}@e"t#ǎR\i*0R1 5y51I5;RB/At7F֩ @.tڽL!+@e1c1l9FT]^p;yEX`vL |i|:x&ȭ d&vP1C6>>Q.F6p]g%R[RKgQ?FAe VaY NvPV֑'2X!WzulNݽ*%x 13NLuzU8oT~t7`>9 gA|ꖺQU%)D$[ ݏr갹x`d*x*_{i0F$2 4QRKM O5 N+$nD[:T-yE>e*<:>6^lS9aIK*4dh~Z̪u<+>/~Z -WlGT~^ FX6E¯z9\1W':8s<̎o_sxZ~o6W?;ǐ;@cVu(^^؍szQ K %rce(!TI?a8F')_>HƱ3]ibp6 x 4lEj_M ZٕKJ>RF2BeG'Ɗ0q\61|fm2K5V5,LhR_PPֺQoJLMmLUHغ "XoXOĝ:*M`@ZwotR-(pT\CHSh%q|!iz{t;ץY&T\[]*L\D5\/ժLvتTPEduNtj-Pk)}a+$B!Y(XeKQK'NUq4پ2ssNS_l#U>;GdnQ^P ~CHJ5ݥ >}FTpa6F7]q'SEFAl7_&]f65LGQz(}>JoGQz(}?/.QU0elQoL$:2+JLju,}?4$>QjjC U  UR $b(f>r$WcpoΎ6 %E*Ɗfs{Oi;5Ww[wpADZ-UNPk) x<4^Y'zRt{ &kD2:4hhPAR!7Q\57d8 ~ruw嫗ShH͌ս4ak"(Ph.1]7ى} j]ڟ:tvY"F=Uw287UJfLkVҴy&H[ITdatS ^[$$|7x/DxǻH"}Ϩ >We/1_~}9IJ*D=d :-l

数学皇冠上的明珠指的是什么
数学皇冠上的明珠指的是什么

数学皇冠上的明珠指的是什么
“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少.陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠.这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标.
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉.辛勤的汗水换来了丰硕的成果.1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界.其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”.华罗庚等老一辈数学家对陈景润的论文给予了高度评价.世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想’最好的一个成果”.
哥德巴赫猜想
陈景润在福州英华中学读书时,有幸聆听了清华大学调来的一名很有学问的数学教师沈元讲课.他给同学们讲了一道世界数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了 ‘任何一个大于2的偶数均可表示两个素数之和’, 简称(1+1).他一生也没证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题.欧拉接到信后,就着手计算.他费尽了脑筋,直到离开人世,也没有证明出来.之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题.200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,从而使它成为世界数学界一大悬案”.老师讲到这里还打了一个有趣的比喻,数学是自然科学皇后,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润.从此,陈景润开始了摘取数学皇冠上的明珠的艰辛历程. 哥德巴赫猜想 歌德巴赫猜想
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来.
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题.他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和.这样,我发现:任何大于7的奇数都是三个素数之和.
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验."
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明.同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明.”
不难看出,哥德巴赫的命题是欧拉命题的推论.事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立.
但是哥德巴赫的命题成立并不能保证欧拉命题的成立.因而欧拉的命题比哥德巴赫的命题要 更高.
现在通常把这两个命题统称为哥德巴赫猜想 指陈景润证明了哥德巴赫猜想

2011-5-3 18:53 提问者: 神龙s再现 | 浏览次数:8007次
我来帮他解答 输入内容已经达到长度限制还能输入 9999 字插入图片删除图片插入地图删除地图插入视频视频地图不登录也可以回答
参考资料:提交回答取消
2011-5-9 18:35 精彩回答 2011-5-9 18:35 热心网友 “哥德巴赫猜想”这一200多年悬而未决的世界级数学难题...

全部展开

2011-5-3 18:53 提问者: 神龙s再现 | 浏览次数:8007次
我来帮他解答 输入内容已经达到长度限制还能输入 9999 字插入图片删除图片插入地图删除地图插入视频视频地图不登录也可以回答
参考资料:提交回答取消
2011-5-9 18:35 精彩回答 2011-5-9 18:35 热心网友 “哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉。辛勤的汗水换来了丰硕的成果。1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界。其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”。华罗庚等老一辈数学家对陈景润的论文给予了高度评价。世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想’最好的一个成果”。
哥德巴赫猜想
陈景润在福州英华中学读书时,有幸聆听了清华大学调来的一名很有学问的数学教师沈元讲课。他给同学们讲了一道世界数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了 ‘任何一个大于2的偶数均可表示两个素数之和’, 简称(1+1)。他一生也没证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,从而使它成为世界数学界一大悬案”。老师讲到这里还打了一个有趣的比喻,数学是自然科学皇后,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取数学皇冠上的明珠的艰辛历程...... 哥德巴赫猜想 歌德巴赫猜想
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。"
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。”
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保

收起

看起来似乎是十分简单的数字,却包含着许多有趣而深奥的学问。在数论研
究中,往往根据一些感性认识,小心的提出“猜想”,然后再通过严格的数学推
论来论证它。上文中我们说过,任何合数都可以分解为素数的乘积,那么把合数
分解成素数之和的情况又如何呢?这里面是否有什么规律呢?
一七四二年,德国的一位中学教师哥德巴赫(Goldbach)发现,“任何一个
大偶数...

全部展开

看起来似乎是十分简单的数字,却包含着许多有趣而深奥的学问。在数论研
究中,往往根据一些感性认识,小心的提出“猜想”,然后再通过严格的数学推
论来论证它。上文中我们说过,任何合数都可以分解为素数的乘积,那么把合数
分解成素数之和的情况又如何呢?这里面是否有什么规律呢?
一七四二年,德国的一位中学教师哥德巴赫(Goldbach)发现,“任何一个
大偶数都可以写成两个素数之和”。例如:6=3+3,9=2+7等等。他对许多偶
数进行了验证,都说明是对的。但是这需要给出证明。因为尚未证明的数学命题
只能称之为猜想。他自己不能证明这个命题,于是就向当时赫赫有名的瑞士大数
学家欧拉(Euler)请教,请他来帮忙。欧拉是当时最负盛名的数学家之一,尽管
他对哥德巴赫的猜想表示相信,但是他却被这个貌似简单的命题难住了。一直到
他去世,欧拉也没有能够完成对哥德巴赫猜想的证明。
哥德巴赫的信中提出了两个猜想:
任何一个大于2的偶数都是两个素数之和。
任何一个大于5的奇数都是3个素数之和。
容易证明猜想(2)是猜想(1)的推论,所以问题就归结为证明猜想(1)。
事实上,对于这个猜想,有人对一个一个的偶数进行了验算。一直到几亿之
巨,都表明这个猜想是正确的。但是更大更大的数呢?猜想也应该是对的。猜想
应当被证明。然而证明它确是很难很难。1900年,德国数学家希尔伯特在国际数
学会的演讲中,把哥德巴赫猜想看成是以往遗留的最重要的数学问题之一。他将
“哥德巴赫猜想”列入了他提出的“当代数学家的23个挑战”之中。而1912年,
德国数学家朗道在国际数学会的演说中说,即使证明较弱的命题“(3)存在一个
正整数a,使每一个大于1的整数都可以表示为不超过a个素数之和”,也是现代
数学家所力不能及的。要说明的是,如果(1)成立,则取a=3即可。1921年,
英国数学家哈代在哥本哈根召开的数学会上说过,猜想(1)的困难程度是可以和
任何没有解决的数学问题相比的。
然而,人类的聪明才智总是不断的突破着一个又一个他们自己设定的极限。
就在此后的1年,即1922年,英国数学家哈代与李特伍德提出了一个研究哥德巴赫
猜想的方法,即所谓的“园法“。1937年,苏联数学家依·维诺格拉朵夫应用圆
法,结合他创造的三角和估计方法,证明了每个充分大的奇数都是三个素数之和
。从而基本上证明了哥德巴赫信中提出的猜想(2)。
就在一部分数学家全力攻坚哥德巴赫猜想(2)的时候,另一部分数学家也向
猜想(1)吹响了冲锋的号角。很早以前,人们就想证明,每一个大偶数是两个“
素因子不太多的”整数之和。他们想这样子来设置包围圈,想由此来逐步、逐步
证明哥德巴赫猜想这个命题,即一个素数加一个素数(1+1)是正确的。于是,人
们一步一步的,尽管非常缓慢,但是总算逐渐接近了证明哥德巴赫猜想。
1920年,挪威数学家布朗改进了有2000多年历史的埃拉多染尼氏“筛法”,
证明了每个充分大的偶数都是两个素因子个数不超过9的正整数之和。相对于最终
命题(1+1),我们将布朗的结果记为(9+9)。1924年,德国数学家拉德马哈
尔证明了(7+7);1930年,苏联数学家史尼尔曼用他创造的整数“密率”结合
布朗筛法证明了命题(3),并可以估算出a的值。1932年,英国数学家埃斯特曼
证明了(6+6);一九三八年,苏联数学家布赫斯塔勃证明了(5+5);一九四
○年,他又证明了(4+4)。一九五六年,数学家维诺格拉多夫证明了(3+3)

我国数学家华罗庚早在30年代就开始研究这一问题,得到了很好的成果,他证
明了对于“几乎所有”的偶数,猜想(1)都是对的。解放后不久,他就倡议并指
导他的一些学生研究这一问题,取得了许多成果,获得国内外高度评价。1965年
,我国数学家初显身手,由王元证明了(3+4),同一年,苏联数学家阿·维诺
格拉朵夫又证明了(3+3)。1957年,王元证明了(2+3)。包围圈越来越小,
越来越接近(1+1)了。但是以上所有的证明都有一个弱点,就是其中的两个数
没有一个可以肯定是素数。
对此,事实上早就有数学家注意到了。于是,他们另外设置了一种包围圈,
即设法证明,“任何一个大偶数都可以写成一个素数和另一个素因子不太多的整
数之和。”1948年,匈牙利数学家兰恩易重新开辟了另一个战场,另劈捷径的证
明了:每个大偶数都是一个素数和一个“素因子都不超过六个的”数之和。1962
年,我国数学家、山东大学讲师潘承洞与苏联数学家巴尔巴恩才各自独立的证明
了(1+5),前进了一步;同年,王元、潘承洞和巴尔巴恩又都证明了(1+4)
。一九六五年,布赫斯塔勃、维诺格拉多夫和数学家庞皮艾黎都证明了(1+3)

人们在哥德巴赫猜想的证明方面所取得的不断进展,仿佛使人们已经看到了
完全证明它的希望。从(1+3)到(1+1),只剩下了两步之遥。究竟谁能够最
后摘下这颗皇冠上的明珠呢?
1966年,中国年青的数学家陈景润证明了(1+2),取得了迄今世界上关于猜想
(1)最好的成果。他证明了,任何一个充分大的偶数,都可以表示成为两个数之
和,其中一个是素数,另一个或为素数;或为两个素数的乘积。虽然“哥德巴赫
定理”还是没有产生,但是这一离它最近的结论却被世界各国一致冠以一个中国
人的名字--“陈氏定理”。

收起

陈景润摘取数学皇冠上的明珠指的是他破解了哥德巴赫猜想!

随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,...

全部展开

随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。"
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。

收起

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111...

全部展开

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 “哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉。辛勤的汗水换来了丰硕的成果。1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界。其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”。华罗庚等老一辈数学家对陈景润的论文给予了高度评价。世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想’最好的一个成果”。
哥德巴赫猜想
陈景润在福州英华中学读书时,有幸聆听了清华大学调来的一名很有学问的数学教师沈元讲课。他给同学们讲了一道世界数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了 ‘任何一个大于2的偶数均可表示两个素数之和’, 简称(1+1)。他一生也没证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,从而使它成为世界数学界一大悬案”。老师讲到这里还打了一个有趣的比喻,数学是自然科学皇后,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取数学皇冠上的明珠的艰辛历程...... 哥德巴赫猜想 歌德巴赫猜想
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。"
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。”
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要 更高。
现在通常把这两个命题统称为哥德巴赫猜想 指陈景润证明了哥德巴赫猜想

收起

“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明...

全部展开

“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉。辛勤的汗水换来了丰硕的成果。1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界。其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”。华罗庚等老一辈数学家对陈景润的论文给予了高度评价。世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想’最好的一个成果”。
哥德巴赫猜想
陈景润在福州英华中学读书时,有幸聆听了清华大学调来的一名很有学问的数学教师沈元讲课。他给同学们讲了一道世界数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了 ‘任何一个大于2的偶数均可表示两个素数之和’, 简称(1+1)。他一生也没证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,从而使它成为世界数学界一大悬案”。老师讲到这里还打了一个有趣的比喻,数学是自然科学皇后,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取数学皇冠上的明珠的艰辛历程...... 哥德巴赫猜想 歌德巴赫猜想
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。"
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。”
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要 更高。
现在通常把这两个命题统称为哥德巴赫猜想 指陈景润证明了哥德巴赫猜想

收起

“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明...

全部展开

“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉。辛勤的汗水换来了丰硕的成果。1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界。其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”。华罗庚等老一辈数学家对陈景润的论文给予了高度评价。世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想’最好的一个成果”。

收起

哥德巴赫猜想

哥德巴赫曾提出这样一个命题即:任何一个大于6的偶数均可表示两个奇因素之和,任何一个大于9的奇数都可以表示成3个奇因素之和。这个命题也叫千古之谜“1+1“。我国青年数学家陈景润证明了“1+2”,他的证明方法被誉为“陈氏定理”,陈景润本人也被人称为“推动了群山的发展”,更获得了飞人博尔特的称号。冠上的明陈景润摘取数学皇冠上的明珠指的是他证明了哥德巴赫猜想。其实这句话之前还有一句。曾经陈景润的老师说过:...

全部展开

哥德巴赫曾提出这样一个命题即:任何一个大于6的偶数均可表示两个奇因素之和,任何一个大于9的奇数都可以表示成3个奇因素之和。这个命题也叫千古之谜“1+1“。我国青年数学家陈景润证明了“1+2”,他的证明方法被誉为“陈氏定理”,陈景润本人也被人称为“推动了群山的发展”,更获得了飞人博尔特的称号。冠上的明陈景润摘取数学皇冠上的明珠指的是他证明了哥德巴赫猜想。其实这句话之前还有一句。曾经陈景润的老师说过:“数学是科学的王后,数论是王后上的王冠,而哥德巴赫猜想则是王冠上的明珠”。因此,陈景润被命名“数学皇冠上的明珠”。

收起

哥德巴赫猜想
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
...

全部展开

哥德巴赫猜想
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。"
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。”
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。
现在通常把这两个命题统称为哥德巴赫猜想

收起

“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。...

全部展开

“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。

收起

哥德巴赫猜想

陈景润摘取数学皇冠上的明珠指的是他破解了哥德巴赫猜想。(具体内容:哥德巴赫提出了‘任何一个偶数均可表示两个素数之和’,简称1+1。他一生也没证明出来,之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。 而陈景润却用一次次数学计算证明了哥德巴赫猜想,把哥德巴赫猜想原来的“1+1”改变成“2+1”,2+1是正确的)...

全部展开

陈景润摘取数学皇冠上的明珠指的是他破解了哥德巴赫猜想。(具体内容:哥德巴赫提出了‘任何一个偶数均可表示两个素数之和’,简称1+1。他一生也没证明出来,之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。 而陈景润却用一次次数学计算证明了哥德巴赫猜想,把哥德巴赫猜想原来的“1+1”改变成“2+1”,2+1是正确的)

收起

你好!“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的...

全部展开

你好!“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉。辛勤的汗水换来了丰硕的成果。1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界。其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”。华罗庚等老一辈数学家对陈景润的论文给予了高度评价。世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想’最好的一个成果”。
哥德巴赫猜想
陈景润在福州英华中学读书时,有幸聆听了清华大学调来的一名很有学问的数学教师沈元讲课。他给同学们讲了一道世界数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了 ‘任何一个大于2的偶数均可表示两个素数之和’, 简称(1+1)。他一生也没证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,从而使它成为世界数学界一大悬案”。老师讲到这里还打了一个有趣的比喻,数学是自然科学皇后,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取数学皇冠上的明珠的艰辛历程...... 哥德巴赫猜想 歌德巴赫猜想
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。"
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。”
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要 更高。
现在通常把这两个命题统称为哥德巴赫猜想 指陈景润证明了哥德巴赫猜想
牛顿
物理学家牛顿小时候看到苹果熟了,掉下来很好奇,他想,地球上的东西,失去了支持后为什么都掉到地上来,而不会向其它方向掉呢?后来,他终于发现了万有引力定律。
爱迪生
爱迪生小时候对什么都感兴趣。对自己不了解的事情总想试一试,弄个明白。有一次他看见花园的篱笆边有一个野蜂窝,感到很奇怪,就用棍子去拨,想看个究竟,结果脸被野蜂蜇得肿了起来,他还是不甘心,非看清楚蜂窝的构造才行。爱迪生后来成了举世闻名的大发明家。
哥白尼
哥白尼慑于教会的统治,怕遭到反对和迫害,迟迟不愿将《天体运行论》公开出版。1543年5月24日,哥白尼在他弥留之际,才在病榻上见到了刚刚出版的《天体运行论》样书。
尽管哥白尼的“太阳中心说”公布后,受到社会上宗教势力和守旧的人们的污蔑和攻击,甚至于信仰宣传这一学说的人也被残酷的镇压和迫害,但是哥白尼的学说,取得了最终的胜利。哥白尼和他的《天体运行论》就像是黑暗夜空中闪烁的巨星,一直放射着璀璨的光芒。
科学家的实例随便选一个毛、白痴哈? “数学皇冠上的明珠”,指的是陈景润把哥德巴赫猜想的证明推进了一大步。
在现代数学史上,陈景润的名字与哥德巴赫猜想紧紧联系在一起。被誉为光辉成就的“陈氏定理”将哥德巴赫猜想的证明推进了一大步,使中国在这一领域的研究上居世界领先地位。
1953年,陈景润毕业于厦门大学数学系。由于他对数论中一系列问题的出色研究,受到华罗庚教授的重视,被调入中国科学院数学研究所工作,后来就有了“ 罗庚慧眼识景润”的佳话。虽然当时的生活条件非常艰苦,在仅有6平方米的小屋里陈景润坚持埋头于哥德巴赫猜想的研究,经过无数个日夜、几度寒暑的艰苦努 力, 终于取得了震惊世界的成就。然而,陈景润付出的努力也是惊人的,用掉的演算草稿纸可以装满几个麻袋,并且积劳成疾。即使如此,躺在病榻上的他,仍锲而不舍 地耕耘着。陈景润在数论中其他著名问题,如高斯圆内格点问题、球内格点问题、塔里问题、华林问题等的研究上也做出了重要贡献。陈景润是国际知名的大数学家,深受人们的敬重。但他并没有产生骄傲自满情绪,而是把功劳都归于祖国和人民。为了维护祖国的利益,他不惜牺牲个人的名利。
1977年的一天,陈景润收到一封国外来信,是国际数学家联合会主席写给他的,邀请他出席国际数学家大会。这次大会有3000人参加,参加的都是世界上 著名的数学家。大会共指定了10位数学家作学术报告,陈景润就是其中之一。这对一位数学家而言,是极大的荣誉,对提高陈景润在国际上的知名度大有好处。
陈景润没有擅作主张,而是立即向研究所党支部作了汇报,请 党的指示。党支部把这一情况又上报到科学院。科学院的党组织对这个问题比较慎重,因为当时中国在国际数学家联合会的席位,一直被台湾占据着。
院领导回答道:“你是数学家,党组织尊重你个人的意见,你可以自己给他回信。”
陈景润经过慎重考虑,最后决定放弃这次难得的机会。他在答复国际数学家联合会主席的信中写到:“第一,我们国家历来是重视跟世界各国发展学术交流与友好关 系的,我个人非常感谢国际数学家联合会主席的邀请。第二,世界上只有一个中国,唯一能代表中国广大人民利益的是中华人民共和国,台湾是中华人民共和国不可 分割的一部分。因为目前台湾占据着国际数学家联合会我国的席位,所以我不能出席。第三,如果中国只有一个代表的话,我是可以考虑参加这次会议的。”为了维 护祖国母亲的尊严,陈景润牺牲了个人的利益。
1979年,陈景润应美国普林斯顿高级研究所的邀请,去美国作短期的研究访问工作。普林斯顿研究所的条件非常好,陈景润为了充分利用这样好的条件,挤出一切可以节省的时间,拼命工作,连中午饭也不回住处去吃。有时候外出参加会议,旅馆里比较嘈杂,他便躲进卫生间里,继续进行研究工作。正因为他的刻苦努力,在美国短短的五个月里,除了开会、讲学之外,他完成了论文《算术级数中的最小素数》,一下 子把最小素数从原来的80推进到16。这一研究成果,也是当时世界上最先进的。
在美国这样物质比较发达的国度,陈景润依旧保持着在国内时的节俭作风。他每个月从研究所可获得2000美金的报酬,可以说是比较丰厚的了。每天中午,他从不去研究所的餐厅就餐,那里比较讲究,他完全可以享受一下的,但他都是吃自己带去的干粮和水果。他是如此的节俭,以至于在美国生活五个月,除去房租、水电花去1800美元外,伙食费等仅花了700美元。等他回国时,共节余了7500美元。
这笔钱在当时不是个小数目,他完全可以像其他人一样,从国外买回些高档家电。但他把这笔钱全部上交给国家。他是怎么想的呢 用他自己的话说:“我们的国家还不富裕,我不能只想着自己享乐。”
陈景润就是这样一个非常谦虚、正直的人,尽管他已功成名就,然而他没有骄傲自满,

收起

日本说钓鱼岛是它的,结果,海啸了! 日本说钓鱼岛是它的,结果,海啸了!

“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明...

全部展开

“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉。辛勤的汗水换来了丰硕的成果。1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界。其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”。华罗庚等老一辈数学家对陈景润的论文给予了高度评价。世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想’最好的一个成果”。
哥德巴赫猜想
陈景润在福州英华中学读书时,有幸聆听了清华大学调来的一名很有学问的数学教师沈元讲课。他给同学们讲了一道世界数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了 ‘任何一个大于2的偶数均可表示两个素数之和’, 简称(1+1)。他一生也没证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,从而使它成为世界数学界一大悬案”。老师讲到这里还打了一个有趣的比喻,数学是自然科学皇后,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取数学皇冠上的明珠的艰辛历程...... 哥德巴赫猜想 歌德巴赫猜想
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。"
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。”
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要 更高。
现在通常把这两个命题统称为哥德巴赫猜想 指陈景润证明了哥德巴赫猜想

收起

自然科学的皇后是数学,数学的皇冠是数论。而哥德巴赫猜想,则是皇冠上
那颗璀璨夺目的明珠。自从十八世纪中叶哥德巴赫提出这一猜想之后,无数的数
学家都被这颗明珠发出的耀眼光彩所吸引,纷纷加入到摘采它的行列中去。然而
却始终没有人能够成功。
十八世纪过去了,没有人能证明它。
十九世纪过去了,仍然没有人能证明它。
历史进入了二十世纪,自...

全部展开

自然科学的皇后是数学,数学的皇冠是数论。而哥德巴赫猜想,则是皇冠上
那颗璀璨夺目的明珠。自从十八世纪中叶哥德巴赫提出这一猜想之后,无数的数
学家都被这颗明珠发出的耀眼光彩所吸引,纷纷加入到摘采它的行列中去。然而
却始终没有人能够成功。
十八世纪过去了,没有人能证明它。
十九世纪过去了,仍然没有人能证明它。
历史进入了二十世纪,自然科学的发展日新月异,无数的科学堡垒被科学家们逐
一攻克。到了本世纪的二十年代,哥德巴赫猜想开始有了一点进展。各国数学家
迂回前进,逐渐缩小了包围圈。在这场世界范围内的世纪竞赛中,一位大家耳熟
能详的中国人--陈景润,战胜了各国数学好手,获得了领先的殊荣。尽管哥德巴
赫猜想还只是一个猜想,但是自从它被提出直至今日,仍然没有其它的科学高峰
可以遮掩它的光芒。历史又到了世纪之交,即将翻