已知实数a,b,c满足a2+b2+c2=1,则ab+bc+ca的取值范围是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:38:47
已知实数a,b,c满足a2+b2+c2=1,则ab+bc+ca的取值范围是
xJ1EK%)C_I%y{\RnjVRJkm_%btܼ{J M_=J'ɛ@ 膤kCSvIE9w~$5HCTCv(D,rzuDT*xj4Y k-mt30 ]hQݤ*ZfV>vT?W=0cyTs)Cݓvge`1Vu`/

已知实数a,b,c满足a2+b2+c2=1,则ab+bc+ca的取值范围是
已知实数a,b,c满足a2+b2+c2=1,则ab+bc+ca的取值范围是

已知实数a,b,c满足a2+b2+c2=1,则ab+bc+ca的取值范围是
2a2+2v2+2c2=2
abc同号时,a2+b2>=2ab,c2+b2>=2cb,a2+c2>=2ac,不等号2边同加 得:2=2a2+2v2+2c2>= 2ab+2bc+2ca
a=b=c=(根号3)/3时,ab+bc+ca=1,所以ab+bc+ca

2a2+2v2+2c2=2
a2+b2大于等于2ab同理2ab+2bc+2ca小于2
a2+b2大于等于-ab同理2ab+2ac+2bc大于-2