设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:34:11
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a的值.
x){n_NF=sS*NXdGY-O=mlgA {l)Ѯ_`gCi@ d-$m9`@Z#QP?тOg/xvɳ9`1[)A.{o=m eӷlNo_\g^

设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a的值.
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a的值.

设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a的值.
f(-x)=1/(ae^x)+ae^x=f(x)=e^x/a+a/e^x
e^x(a-1/a)=1/e^x*(a-1/a)
因此有a-1/a=0
由a>0,得:a=1
此时f(x)=e^x+e^(-x)

设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a的值. 设f(x)={x^sin(1/x),x>0 a+e^x,x 设a大于0,f(X)=e^(x)/a+a/e^(x)在R上满足f(-x)=f(x).(1)求a的值. 设f(x)=e^x+a,x>0和3x+b,x 设函数f(x)=e^x-e^(-x),对任意x≥0,f(x)≥ax成立,求a的范围.g'(x)=2e^x-a是错的吧?e^(-x)求导,是-e^(-x) 设a﹥0,f(x)=e^x/a +a/e^x是R上的偶函数.证明f(x)在(0,正无穷大)上是增函数 设a为实数,函数f(x)=e^2x+|e^x-a|当a>0求f(x)最小值 设函数f(x)=(a^2)lnx-x^2+ax,a>0,求f(x)单调区间,求所有实数a,使e-1≤f(x)≤e^2,对X∈[1,e]恒成立,注:e 设函数f(x)=(a^2)lnx-x^2+ax,a>0,求f(x)单调区间,求所有实数a,使e-1≤f(x)≤e^2,对X∈[1,e]恒成立,注:e 高数 设a>e,证明当x>0时,a^(a+x)>(a+x)^a 设a>0,f(x)=e∧x/a+a/e∧x在R上满足f(-x)=f(x).(1)求a的值;(2)证明f(x)在(0,+∞)上是增函数 f(x)=xlnx(1)设F(x)=f(x)/a(a>0),求F(x)在[a,2a]的最大值(2)证明:xlnx>x/e^x-2/e恒成立 高一函数小题4 设a>0,f(x)=(e^x)/a+a/(e^x)是R上的偶函数,则a=________.设a>0,f(x)=(e^x)/a+a/(e^x)是R上的偶函数,则a=________.注:e=2.71828…… 设函数f(x)=x(e^x+ae^-x 是偶函数,求a 微积分 证明 存在ε,η∈(a,b),使得f'(ε)/f'(η)=(e^b-e^a)*e^(-η)/(b-a)设f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)≠0,试证:存在ε,η∈(a,b),使得f'(ε)/f'(η)=(e^b-e^a)*e^(-η)/(b-a) 设a>0,f=ex/a+a/ex是R上的偶函数.①求a的值;②证明f在上是增函数 (1)f(x)=f(-x)恒成立 (e^x)/a+a/(e^x)=1/(ae^x)+ae^x (a-1/a)(e^x-1/e^x)=0 恒成立 所以a=1/a 为什么此时的(e^x-1/e^x)不等于0?当 求函数f(x)=(e^x-a)^2+(e^-x-a)^2 (0 f(x)=(e^x-a)^2+(e^-x-a)^2 (0