设X1,X2,…,Xn,…为独立同分布的随机变量序列,若( )时,则{Xi}服从契比雪夫大数定律.A) Xi的分布律为P{Xi=k}=1/(ek!) (k=0,1,2,…)B) Xi的分布律为P{Xi=k}=1/[k(k+1)] (k=1,2,…)C) Xi的概率密度为f(x)=1/[π(1+x^2)] (-

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 07:14:34
设X1,X2,…,Xn,…为独立同分布的随机变量序列,若( )时,则{Xi}服从契比雪夫大数定律.A) Xi的分布律为P{Xi=k}=1/(ek!) (k=0,1,2,…)B) Xi的分布律为P{Xi=k}=1/[k(k+1)] (k=1,2,…)C) Xi的概率密度为f(x)=1/[π(1+x^2)] (-
xT]K`+HץqSleA*l؁Dl72:Zuҵq֟ 9o# fWi9sDgGZf\Atgx>f l %w ΁s2GBHĻ5\|z7,mj; 2Nu}hfP|PqN!^-,$>1$hj)GLhVŴc>/4TWt"~'(?/gC={w槨<;/3b4?VtWnWkZwț4{ P<J_k}Ͷ\CB|ZE- 6ˎO6,B.6818+qjcwlsA#~Hܐ81ƺkӉ@n [VS#\G”BJڧObbJg89IL@ٔH#2(4 ۄ.)3BNc=cǩg{+nBQdKreJ/Ԝ 1#kb254<1)P: ͤv郰Dm6Aޘ.QHJun0)u=Co_e#~6KO:Cϕa9]U|{t̃kzׂ6!%0FPi64w!m8___RשJk

设X1,X2,…,Xn,…为独立同分布的随机变量序列,若( )时,则{Xi}服从契比雪夫大数定律.A) Xi的分布律为P{Xi=k}=1/(ek!) (k=0,1,2,…)B) Xi的分布律为P{Xi=k}=1/[k(k+1)] (k=1,2,…)C) Xi的概率密度为f(x)=1/[π(1+x^2)] (-
设X1,X2,…,Xn,…为独立同分布的随机变量序列,若( )时,则{Xi}服从契比雪夫大数定律.
A) Xi的分布律为P{Xi=k}=1/(ek!) (k=0,1,2,…)
B) Xi的分布律为P{Xi=k}=1/[k(k+1)] (k=1,2,…)
C) Xi的概率密度为f(x)=1/[π(1+x^2)] (-∞

设X1,X2,…,Xn,…为独立同分布的随机变量序列,若( )时,则{Xi}服从契比雪夫大数定律.A) Xi的分布律为P{Xi=k}=1/(ek!) (k=0,1,2,…)B) Xi的分布律为P{Xi=k}=1/[k(k+1)] (k=1,2,…)C) Xi的概率密度为f(x)=1/[π(1+x^2)] (-
选A
要满足切比雪夫大数定律,必须要求Xi的方差存在(一致有界)
当然,D(Xi)存在蕴含了E(Xi)存在
简单一点的方法就是排除
对B选项,E(Xi)=∑{k=1,∞}k/[k*(k+1)]=∑{k=1,∞}1/(k+1)
而级数∑{k=1,∞}1/(k+1)发散,故E(Xi)不存在
对C选项,E(Xi)=∫{-∞,+∞}x/[π*(1+x²)]dx
=1/π*[∫{-∞,0}x/(1+x²)dx+∫{0,+∞}x/(1+x²)dx]
=1/π*[1/2*ln(1+x²)|{-∞,0}+1/2*ln(1+x²)|{0,+∞}]
显然,广义积分∫{-∞,0}x/(1+x²)dx与∫{0,+∞}x/(1+x²)dx都是发散的,故E(Xi)不存在
对D选项,由于D(Xi)=E(Xi²)-[E(Xi)]²
其中,E(Xi²)=∫{1,+∞} x²*A/x³dx=A*∫{1,+∞}1/xdx=A*lnx|{1,+∞}
显然,广义积分∫{1,+∞}1/xdx发散,故E(Xi²)不存在,则D(Xi) 不存在
对A选项,E(Xi)=∑{k=0,∞}k/(e*k!)
=1/e*∑{k=1,∞}k/k!
=1/e*∑{k=1,∞}1/(k-1)!
=1/e*∑{k=0,∞}1/k!
=1/e*e 利用e^x=∑{n=0,∞}xⁿ/n!取x=1
=1
E(Xi²)=∑{k=0,∞}k²/(e*k!)
=1/e*∑{k=1,∞}k²/k!
=1/e*∑{k=1,∞}k/(k-1)!
利用比值判别法,容易得出级数∑{k=1,∞}k/(k-1)!收敛
故E(Xi²)

设随机变量X1,X2,---,Xn独立同分布且具有相同的分布密度,证明:P{Xn>max(X1,X2,...,Xn-1)}=1/n 设随机变量X1,X2,…,Xn(n>1)d独立同分布,且其方差为a^2>0,令Y=1/nEX1,则 设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的一个. 设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1 .随机变量X=sum(Xn/(3^n))设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1.随机变量X=sum(Xn/(3^n)){n从1到无穷 设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n 【请教高手】概率论多维随机变量证明题设连续随机变量X1、X2……Xn独立同分布,试证P(Xn>max(X1、X2、……Xn-1))=1/n 数理统计基本概念问题书中给出定义:若X1,X2,…,Xn为F的一个样本,则X1,X2,...,Xn相互独立且他们的分布函数都是F,故(X1,X2,...,Xn)的分布函数为 F*(x1,x2,...,xn)=F(x1) *F(x2)*F(x3)*.*F(xn).据我所知,若某 随机变量X1,X2,……Xn独立同分布,方差为σ^2,Y=1/nΣ(1~n)Xi,则D(X1-Y)= 设随机变量X1,X2,……Xn相互独立同分布,且都有密度函数f(x)=1/π(1+x^2),证X1,X2……Xn不满足中心极限定理 X1,X2...Xn相互独立,都为参数为a的指数分布,求X1+X2+...+Xn的分布? 康托分布的期望和方差怎么求?《概率论基础教程》习题设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1.随机变量X=sum(Xn/(3^n)){n从1到无穷}的分布称为康托分布,求E(X)和VA 设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立. 已知X1,X2,,Xn独立同分布,…………概率问题 如图希望也有截图啊 关于概率论的2道题目1、设随机变量X1,X2,…Xn相互独立,且X1,X2,…Xn都有[0,a]上服从均匀分布,记U=max(X1,X2,…Xn),V=min(X1,X2,…Xn),求U、V的联合概率分布率 2、投一颗骰子,直到点数全部出现,求投掷次 概率论,已知随机变量X1,X2,X3,…Xn(n>1)相互独立且同分布概率论,已知随机变量X1,X2,X3,…Xn(n>1)相互独立且同分布 ,其方差为σ^2,Y=1/n∑(1~n)Xi,求Cov(X1,Y) 设随机变量X1,X2,…,Xn,…独立同分布,其分布函数为F(x)=a+(1/π)*arctan(x/b),b≠0,则辛钦大数定律对此序列适用吗?我算过EX,是0啊,EX是存在的,为什么答案是不适用呢? 【考研数学概率论问题】x1,x2,x3……xn,独立同分布,请问样本均值(X拔)与样本观测值(Xi)独立吗? 给出原因?定理? 大学概率题,关于期望和方差的设随机变量X1,X2,...,Xn相互独立同分布,其概率密度为:f(x)=2e^[-2(x-t)] ,x>t ;0,x