一个三重积分问题.计算:∫∫∫[1/(1+x+y+z)³]dxdydz积分区域Ω是由四个平面:x=0、y=0、z=0和x+y+z=1围成的.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 17:46:08
一个三重积分问题.计算:∫∫∫[1/(1+x+y+z)³]dxdydz积分区域Ω是由四个平面:x=0、y=0、z=0和x+y+z=1围成的.
x){ɎUOvtl}|ӎ׽\4CźMg֣ma]]]V\Z`RRRgϭ|6c)Ξ 4/.Qak𸡱LV<6-:&<բgT5`Y< l[`Xd(A6yv  1

一个三重积分问题.计算:∫∫∫[1/(1+x+y+z)³]dxdydz积分区域Ω是由四个平面:x=0、y=0、z=0和x+y+z=1围成的.
一个三重积分问题.
计算:
∫∫∫[1/(1+x+y+z)³]dxdydz
积分区域Ω是由四个平面:x=0、y=0、z=0和x+y+z=1围成的.

一个三重积分问题.计算:∫∫∫[1/(1+x+y+z)³]dxdydz积分区域Ω是由四个平面:x=0、y=0、z=0和x+y+z=1围成的.
被积区域是0

关于高等数学三重积分的问题高数三重积分那一章我有一个题总是不懂:计算三重积分∫∫∫(Z的平方)dxdydz,其中⊙是由椭球体x2/a2+y2/b2+z2/c2=1所围的空间区域.书本上关于∫∫dxdy=πab(1-z2/c 一个三重积分问题 问一道三重积分问题计算三重积分∫∫∫y^2dxdydz,其中Ω为锥面z=(4x^2+4y^2)^1/2与z=2所围立体 一个三重积分问题.计算:∫∫∫[1/(1+x+y+z)³]dxdydz积分区域Ω是由四个平面:x=0、y=0、z=0和x+y+z=1围成的. 三重积分问题球大神指导三重积分∫∫∫(x²+y²+z²)dv 球面是x²+y²+(z-1)²所围成的区域 计算三重积分∫∫∫xyyzzzdv,积分区域是长方体:0 三重积分计算的问题请问计算三重积分时,若不画图怎么根据已知的代数式子求出各个变量的范围,如这道题I=∫∫∫{Ω}f(x,y,z)dv,积分区域为由曲面z=x^2+y^2,y=x^2,y=1,z=0所围成的空间闭区域?还有如 计算∫∫∫下面放一个∩ 的符号xdxdydz,其中∩ 由三坐标面及平面x+y+z=1所围的空间闭区域计算∩三重积分 关于高数三重积分∫∫∫dxdydz这样能不能计算出一个球心在原点半径为1的球的体积如果用截图法计算出来是∫-1 1∏(1-z^2)dz是零啊哪位能给解决下还有能不能用∫∫∫dxdy这样计算面积三重 计算三重积分∫∫∫(x^3y-3xy^2+3xy)dV,其中V是球体(x-1)^2+(y-1)^2+(z-1)^2 计算三重积分 ∫(1,e)dx ∫(1,x)dy ∫(0,pi/2xy)sin(xyz)dz 计算三重积分∫∫∫(x^3y-3xy^2+3xy)dV,其中V是球体(x-1)^2+(y-1)^2+(z-2)^2 计算三重积分∫∫∫zdv,其中Ω由z=-√(x^2+y^2)与z=-1围成的闭区域 计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域 计算三重积分∫∫∫Ωzdxdydz,其中Ω为三个坐标面及平面2/x+y+Z=1所围成的区域 计算三重积分∫∫∫ xydxdydz 其中Ω为三个坐标面及平面x+y+z=1所围成的闭区域 三重积分计算:∫∫∫zdxdydz x+y+z=1和x≥0,y≥0,z≥0 设Ω由平面z=1及z=x^2+y^2围成,计算三重积分∫∫∫zdxdydz