求证:x^9999+x^8888+x^7777.x^2222+x^1111+1 能被x^9+x^8+x^7.x^1+1整除

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 13:12:14
求证:x^9999+x^8888+x^7777.x^2222+x^1111+1 能被x^9+x^8+x^7.x^1+1整除
x){{fUYvE)s Ы3  ^4}h5P)HHPP-/g.I*ҧyv6wӎϧxں<]C[ ]CM 0[DiiWhj$ف\Qs

求证:x^9999+x^8888+x^7777.x^2222+x^1111+1 能被x^9+x^8+x^7.x^1+1整除
求证:x^9999+x^8888+x^7777.x^2222+x^1111+1 能被x^9+x^8+x^7.x^1+1整除

求证:x^9999+x^8888+x^7777.x^2222+x^1111+1 能被x^9+x^8+x^7.x^1+1整除
利用公式x^n-1=(x-1)(x^n-1+x^n-2+...+x+1)