谁知道海伦定理

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 23:30:49
谁知道海伦定理
xTKO@+'PC+R˱ı4mQ)Rh ErG qBtgm:;.T-Rwvf۝Y3qrj?Add3|tչ+)Ȧ=HnhQJ'F#(4_8}tD/32 v=iB#sж>)mnRpXc\ ~N}a% ÑePkS/= lwɌD)mZgcf;AV*-l|>=C rvQ-0f}@$%_}6v _<~av#hF刞{?{a%Ctm]a"*(k;IQ8. 뜗 sdHK#5U-1G0O~r6> a9a.PNIq̱ G

谁知道海伦定理
谁知道海伦定理

谁知道海伦定理
海伦公式又译希伦公式,传说是古代的叙拉古国王希伦二世发现的公式,利用三角形的三条边长来求取三角形面积.但根据Morris Kline在1908年出版的着作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表.
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=\sqrt{s(s-a)(s-b)(s-c)}
而公式里的s:
s=\frac{a+b+c}{2}
由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式.比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案.
[编辑]证明
与海伦在他的着作"Metrica"中的原始证明不同,在此我们用三角公式和公式变形来证明.设三角形的三边a、b、c的对角分别为A、B、C,则馀弦定理为
\cos(C) = \frac{a^2+b^2-c^2}{2ab}
从而有
\sin(C) = \sqrt{1-\cos^2(C)} = \frac{ \sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2} }{2ab}
因此三角形的面积S为
S = \frac{1}{2}ab \sin(C)
= \frac{1}{4}\sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2}
= \sqrt{s(s-a)(s-b)(s-c)}
最后的等号部分可用因式分解予以导出.