线性代数 基础解系设n阶方阵A=[aij]的秩为n,以A的前r(rη n(是n不是r,上面打错了)=[An1,An2,……Ann]T为方程组(I)的一个基础解系,其中Aij为行列式|A|中元素aij饿代数余子式。
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 11:41:07
线性代数 基础解系设n阶方阵A=[aij]的秩为n,以A的前r(rη n(是n不是r,上面打错了)=[An1,An2,……Ann]T为方程组(I)的一个基础解系,其中Aij为行列式|A|中元素aij饿代数余子式。
线性代数 基础解系
设n阶方阵A=[aij]的秩为n,以A的前r(r
η n(是n不是r,上面打错了)=[An1,An2,……Ann]T为方程组(I)的一个基础解系,其中Aij为行列式|A|中元素aij饿代数余子式。
线性代数 基础解系设n阶方阵A=[aij]的秩为n,以A的前r(rη n(是n不是r,上面打错了)=[An1,An2,……Ann]T为方程组(I)的一个基础解系,其中Aij为行列式|A|中元素aij饿代数余子式。
A可逆,故由AA*=det(A)E知A*可逆,因此题目给出的的n-r个向量是A*的后n-r列,是线性无关的,只要证明他们是第一个方程组的解即可.由AA*=det(A)E知,A的第i(i=1,2..,r)行与A*的第j(j=r+1,...,n)列相乘为0,恰好就说明他们是(1)的解.
首先易得解空间的维数是n-r
r(A)=n,所以A*的秩也是n,这个可以直接由公式得,几乎都不用证的。
r(A*)=n,就是A*可逆,所以A*的列向量组线性无关,而待证的那一组向量就是A*的列向量组中的,所以线性无关,又刚好是n-r个,所以可以作为一组基,也就是方程组的一个基础解系...
全部展开
首先易得解空间的维数是n-r
r(A)=n,所以A*的秩也是n,这个可以直接由公式得,几乎都不用证的。
r(A*)=n,就是A*可逆,所以A*的列向量组线性无关,而待证的那一组向量就是A*的列向量组中的,所以线性无关,又刚好是n-r个,所以可以作为一组基,也就是方程组的一个基础解系
收起