数列{an}满足递推公式an=3a(n-1)【角标】+3^n+1,又a1=5,则使数列{an+拉姆的/3^n}为等差数列的实数拉姆的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:41:17
xQN@.!@%O1?`BtiRl4X55Pi#?QfU#{Ϲ{F3
vEm&b^X#vN*Kʎ8[˃{ZzEH8m6th0/d&t2 Ц3[vr*4$tEjX
数列{an}满足递推公式an=3a(n-1)【角标】+3^n+1,又a1=5,则使数列{an+拉姆的/3^n}为等差数列的实数拉姆的
数列{an}满足递推公式an=3a(n-1)【角标】+3^n+1,又a1=5,则使数列{an+拉姆的/3^n}为等差数列的实数拉姆的
数列{an}满足递推公式an=3a(n-1)【角标】+3^n+1,又a1=5,则使数列{an+拉姆的/3^n}为等差数列的实数拉姆的
λ=1/2,下面是理由
设an-μ=3(a(n-1)-μ) 3^n移项得an=3a(n-1) 3^n-2μ,即μ=-1/2
故an 1/2=3(a(n-1) 1/2) 3^n
等式两边同时除以3^n,可得
(an 1/2)/3^n=(a(n-1) 1/2)/3^(n-1) 1
所以数列{(an 1/2)/3^n}为等差数列,公差为1
已知数列an满足a1=3,a(n+1)=2an+1的通项公式详推
数列按满足a1=1 a(n+1)=2^n-3an,设bn=an/2^n,求数列bn的递推公式 bn的通项公式an的通项公式
已知数列{an}满足a1=1,an=3^(n-1)+a(n-1)(n∈N*,n≥2),证明an=(3^n -1)/2满足递推公式
已知数列{an}递推公式为a(n+1)=3an+1 a1=1/2 求an
数列{an}满足递推公式an=3a(n-1)【角标】+3^n+1,又a1=5,则使数列{an+拉姆的/3^n}为等差数列的实数拉姆的
五道高一数学题,在线等1.数列{an}满足:a1=2.当n≥1时,有a(n+1)=an/2+3,求{an}的通项公式an2.已知a1=1,a2=3且a(n+2)-2a(n+1)+an=a,求an3.数列{an}满足a1=1,a(n+1)=4an+(3n+1),求an4.数列{an}满足递推关系:an=a(n-2)+2,且a1=
急求高一数学数列题,详细过程!an/a(n-1)=2^n,且a1=1,求a100和an已知数列{an}满足递推关系式an=2a(n-1)+1 (n>=2,n∈N*)(1)证明bn=an+1是等比数列(2)求数列{an}的递推 公式求和S=1/1*3+1/3*5+1/5*7...+1/(2n-1)(2n+
已知数列{an}递推公式为a(n+1)=3an+1 a1=1/2(1)求证{an + 1/2}是等比数列(2)求an
如何用数列递推公式an=[2a(n-1)]+1求通项公式?
已知数列an满足a1=1,a(n+1)=an/(3an+1) 求数列通项公式
数列{an)满足an=4a(n-1)+3,a1=0,求数列{an}的通项公式
数列an 满足递推公式 a下标n+1=ka下标n+3^(n+1)-1 且a1=5 k=6时求an的通项
已知数列{an}的递推公式为 a1=2,a(n+1)=3an +1 bn=an+ 1/2(1) 求证;数列{bn}为等比数列(2)求数列{an}的通项公式
数列﹛a﹜满足递推公式a1=1/2,an﹢1=an+﹙1/n²﹢2n﹚求通项公式
a1=1,a(n+1)=3^n+an,求数列an的通项公式(利用这个递推公式)
数列递推公式求通项公式A[n+1]=3*2^(n-1)+2An注:[]中的是下标.求an.
【数学】已知数列的递推关系求通项公式已知数列{an}满足a1=-1,a(n+1)=[(3n+3)an+4n+6]/n,求{an}的通项公式.(注明过程)(注:等式左边的“a(n+1)”表示“第n+1项”)
若等差数列{an}满足递推公式an+1=- an+n.则a5等于多少?