设A:V→U是向量空间V到U的线性映射,证明:1、A(0)=02、A(-α)=-A(α)3、A(α-β)=A(α)-A(β)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:34:14
设A:V→U是向量空间V到U的线性映射,证明:1、A(0)=02、A(-α)=-A(α)3、A(α-β)=A(α)-A(β)
x){n=M }6c _?_-aO;6>|g ˟XtC΋fu>nh0x=QV$zn#PFs@25 1"}֍Ver~  ~:2OYŖ uىَV`` 4m {yų~vɎ';Vl ~ԃf1Lh&@$ ! u@*5 0KS" ԓԣ_\g d9R

设A:V→U是向量空间V到U的线性映射,证明:1、A(0)=02、A(-α)=-A(α)3、A(α-β)=A(α)-A(β)
设A:V→U是向量空间V到U的线性映射,证明:
1、A(0)=0
2、A(-α)=-A(α)
3、A(α-β)=A(α)-A(β)

设A:V→U是向量空间V到U的线性映射,证明:1、A(0)=02、A(-α)=-A(α)3、A(α-β)=A(α)-A(β)
(1)和(2)用性质A(ka)=kA(a):
(1)、A(00)=0A(0)=0.注意:前面一个是数0,后面一个是0向量.
(2)、A(-a)=A((-1)a)=(-1)A(a)=-A(a).
(3)、A(a-b)=A(a+(-b))=A(a)+A((-1)b)=A(a)-A(b).

设A:V→U是向量空间V到U的线性映射,证明:1、A(0)=02、A(-α)=-A(α)3、A(α-β)=A(α)-A(β) 高代对偶映射证明:φ是单射等价于φ*满射.设U,V均为有限维线性空间.φ是U到V的映射,φ*是φ的对偶映射.证明:φ是单射等价于φ*满射. 证明:设A:V→U是向量空间V,U的线性映射,则以下两条等价1、A是满射2、若Ω是V的生成集,则A(Ω):={A(ω )|ω∈Ω}是U的生成集 证明u×(u×(u×(u×v))) = -u×(u×v),u是单位向量,v是任意空间向量 设A∈Hom(V,U)是线性映射,α1,...,αk∈V.证明:若U中A(α1),...,A(αk)线性无关,则在V中α1,...,αk线性无关 高等代数问题求教. 设V是一个线性空间,a,b是V到V的线性映射,满足a^2=a,b^2=b,高等代数问题求教.设V是一个线性空间,a,b是V到V的线性映射,满足a^2=a,b^2=b,证明:a与b有相同的核是ab=a,ba=b的充分必要 设U是所有n阶实矩阵构成的空间,其中的对称矩阵构成线性子空间V,反对称矩阵构成线性子空间W.证明U=V⊕W麻烦老师了! 证明是线性空间设V是数域F上的线性空间,W是V的一个子空间,U={σ是V的一个线性变换|σ(V)是W的子集}.证明:U关于通常的线性变换的加法与数量乘积是F上的线性空间. 关于域和空间的,..已知 V是 域Z2(:={0,1})上的向量空间,假定u,v属于V证明 span{u,v}≠ span{u+v,u-v}只要思想 问:大学线性代数求证设U 和W 都是向量空间V 的 子空间,那么下面的命题是正确还是错误(给出证明或反例)1. U∩W是 V 的 向量子空间.2.V-U={x∈V:x∉U} 是V的 向量子空间.不好意思哈第一 高等代数线性映射设R为实数域,V= 图片 是R^3*3的一个子空间,则V的维数等于多少? 设F是数域,映射a:F^2*2→F^2:(ab)→(a+2b+4c,-a+2b-4d)是线性映射.则dimKer a等于多少? 有关欧氏空间的一道线性代数题设V是一个欧氏空间(n维实内积空间),f:v->v是一个映射.如果对任意的a,b属于V,有(f(a),f(b))=(a,b),那么f是V->V上的一个线性映射.问:上述命题正确吗?如果正确,给出证 设坐标平面上全部向量的集合为V,a=(a1,a2)为V的一个单位向量.已知从V到V的映射f由f(x)=-x+2(x·a)a(x∈V)确定 (1)若x,y∈V,求证:f(x)·f(y)=x·y;  (2)对于x∈V,计算f[f(x)]-x;  (3)设u=(1,0),v=(0,1),若f 空间向量与平行关系!设向量U实施平面α的法向量,向量A是直线L的方向向量,判断直线L与α的位置关系.(1)向量U=(2,2,-1) 向量A=(-3,4,2)(2) 向量U=(0,2,-3) 向量A=(0,-8,12)设向量U,V分别是平面 线性空间的子空间一定有补空间吗?已知线性空间U是线性空间V的子空间,求证存在线性空间W使得U交W={0}U+W=V其中+代表直和.或者您能举出反例也可.一楼的论证对有限维是没问题的,但对于U和 设U是v的一个子空间,求U+U线代高手来看下阿, 关于线性变换,一一对应,映射的证明题证明:设有一个线性变换T,这个T会把任意一个线性无关的向量x,x属于U,变换之后对应到另一个线性无关的向量y,y属于V.那么我们说T必须是1-1(单射)证明 已知向量U V是两个不共线的向量 向量a=u=v b=3u-2v c=2u=3v 求证 向量a b c 共面